Introduction: The glycosylphosphatidylinositol (GPI) anchor is a glycolipid that anchors proteins to the eukaryotic cell surface. An anchoring process is a posttranslational modification of at least 150 molecules with various functions. Biallelic causal variants in the gene (OMIM: * 605754) are associated with a type of disorder of glycosylphosphatidylinositol biosynthesis (PIGQ-congenital disorders of glycosylation (CDGs), also called multiple congenital anomalies-hypotonia-seizures syndrome 4 (MCAHS4, OMIM: # 618548).
View Article and Find Full Text PDFHouge-Janssens syndrome (HJS) is caused by protein phosphatase type 2A (PP2A) dysfunction. The core features are neurodevelopmental delay, especially concerning language, prolonged hypotonia, high risk of seizures, and behavior problems. PP2A oppose the activity of serine/threonine protein kinases, including growth promoting kinases of the PIK3CA/AKT/mTOR and RAS/MAPK pathways.
View Article and Find Full Text PDFNat Genet
July 2025
Artificial intelligence (AI) is rapidly transforming numerous aspects of daily life, including clinical practice and biomedical research. In light of this rapid transformation, and in the context of medical genetics, we assembled a group of leaders in the field to respond to the question about how AI is affecting, and especially how AI will affect, medical genetics. The authors who contributed to this collection of essays intentionally represent different areas of expertise, career stages, and geographies, and include diverse types of clinicians, computer scientists, and researchers.
View Article and Find Full Text PDFBackground: Decisions to split two or more phenotypic manifestations related to genetic variations within the same gene can be challenging, especially during the early stages of syndrome discovery. Genotype-based diagnostics with artificial intelligence (AI)-driven approaches using next-generation phenotyping (NGP) and DNA methylation (DNAm) can be utilized to expedite syndrome delineation within a single gene.
Methods: We utilized an expanded cohort of 56 patients (22 previously unpublished individuals) with truncating variants in the MN1 gene and attempted different methods to assess plausible strategies to objectively delineate phenotypic differences between the C-Terminal Truncation (CTT) and N-Terminal Truncation (NTT) groups.
Background: The gene encodes a subunit of the conserved LSM1-7 protein complex involved in messenger RNA (mRNA) metabolism. Variants in the gene have been described in two separate case reports. The first published report identified the homozygous splice-site variant c.
View Article and Find Full Text PDFIntroduction: Many rare disorders, particularly neurodevelopmental conditions, manifest structural brain malformations. Just as dysmorphologists rely on facial gestalt recognition to identify syndromes, radiologists and neurologists face similar challenges in identifying the "brain gestalt" of rare disorders-especially when encountering rare conditions or those they have not previously seen. Next-generation phenotyping (NGP) has been proven capable of supporting clinicians in recognizing facial dysmorphic patterns associated with the underlying syndrome through training on thousands of patient photographs.
View Article and Find Full Text PDFPathogenic variants resulting in protein phosphatase 2A (PP2A) dysfunction result in mild to severe neurodevelopmental delay. PP2A is a trimer of a catalytic (C) subunit, scaffolding (A) subunit, and substrate binding/regulatory (B) subunit, encoded by 19 different genes. De novo missense variants in PPP2R5D (B56δ) or PPP2R1A (Aα) and de novo missense and loss-of-function variants in PPP2CA (Cα) lead to syndromes with overlapping phenotypic features, known as Houge-Janssens syndrome (HJS) types 1, 2, and 3, respectively.
View Article and Find Full Text PDFThe facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic disorders that is often essential for suspecting and establishing a specific diagnosis. Therefore, publishing images of individuals affected by pathogenic variants in disease-associated genes has been an important part of scientific communication. Furthermore, medical imaging data is also crucial for teaching and training deep-learning models such as GestaltMatcher.
View Article and Find Full Text PDFBackground: Impaired mitochondrial protein import machinery leads to phenotypically heterogeneous diseases. Here, we report a recurrent homozygous missense variant in the gene that encodes the translocase of outer mitochondrial membrane 7 (TOMM7) in nine patients with microcephaly, short stature, facial dysmorphia, atrophic macular scarring, and moyamoya disease from seven unrelated families.
Methods: To prove the causality of the TOMM7 variant, mitochondrial morphology, proteomics, and respiration were investigated in CRISPR/Cas9-edited iPSCs-derived endothelial cells.
Purpose: Heterozygous pathogenic variants in NTRK2 (HGNC: 8032) have been associated with global developmental delay. However, only scattered cases have been described in small or general studies. The aim of our work was to consolidate our understanding of NTRK2-related disorders and to delineate the clinical presentation.
View Article and Find Full Text PDFAn increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.
View Article and Find Full Text PDFDevelopmental Delay with Gastrointestinal, Cardiovascular, Genitourinary, and Skeletal Abnormalities syndrome (DEGCAGS, MIM #619488) is caused by biallelic, loss-of-function (LoF) ZNF699 variants, and is characterized by variable neurodevelopmental disability, discordant organ anomalies among full siblings and infant mortality. ZNF699 encodes a KRAB zinc finger protein of unknown function. We aimed to investigate the genotype-phenotype spectrum of DEGCAGS and the possibility of a diagnostic DNA methylation episignature, to facilitate the diagnosis of a highly variable condition lacking pathognomonic clinical findings.
View Article and Find Full Text PDFAm J Med Genet A
February 2025
Am J Med Genet A
September 2024
Next-generation phenotyping (NGP) can be used to compute the similarity of dysmorphic patients to known syndromic diseases. So far, the technology has been evaluated in variant prioritization and classification, providing evidence for pathogenicity if the phenotype matched with other patients with a confirmed molecular diagnosis. In a Nigerian cohort of individuals with facial dysmorphism, we used the NGP tool GestaltMatcher to screen portraits prior to genetic testing and subjected individuals with high similarity scores to exome sequencing (ES).
View Article and Find Full Text PDFIndividuals with suspected rare genetic disorders often undergo multiple clinical evaluations, imaging studies, laboratory tests and genetic tests, to find a possible answer over a prolonged period of time. Addressing this "diagnostic odyssey" thus has substantial clinical, psychosocial, and economic benefits. Many rare genetic diseases have distinctive facial features, which can be used by artificial intelligence algorithms to facilitate clinical diagnosis, in prioritizing candidate diseases to be further examined by lab tests or genetic assays, or in helping the phenotype-driven reinterpretation of genome/exome sequencing data.
View Article and Find Full Text PDFGenomic variant prioritization is crucial for identifying disease-associated genetic variations. Integrating facial and clinical feature analyses into this process enhances performance. This study demonstrates the integration of facial analysis (GestaltMatcher) and Human Phenotype Ontology analysis (CADA) within VarFish, an open-source variant analysis framework.
View Article and Find Full Text PDFNeurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes.
View Article and Find Full Text PDFAm J Hum Genet
February 2024
The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now.
View Article and Find Full Text PDF