Basal cell adenoma (BCA) and basal cell adenocarcinoma (BCAC) of the salivary gland are rare tumours that can be difficult to distinguish from each other and other salivary gland tumour subtypes. Using next-generation sequencing, we identify a recurrent FBXW11 missense mutation (p.F517S) in BCA that is mutually exclusive with the previously reported CTNNB1 p.
View Article and Find Full Text PDFThe homozygous Leu100Pro amino acid substitution in SPRED2, a protein negatively controlling RAS function, has recently been identified to be causally linked to a recessive form of Noonan syndrome. The amino acid substitution was documented to affect protein stability and cause a decreased and/or less stable interaction with neurofibromin, a RAS-specific GTPase activating protein negatively regulating RAS function. To further investigate the structural and functional impact of Leu100Pro, we structurally characterized the consequences of this change on the interaction of SPRED2 with neurofibromin, by 1 µn-long molecular dynamics (MD) simulations.
View Article and Find Full Text PDFPurpose: Pathogenic LZTR1 variants cause schwannomatosis and dominant/recessive Noonan syndrome (NS). We aim to establish an association between heterozygous loss-of-function LZTR1 alleles and isolated multiple café-au-lait macules (CaLMs).
Methods: A total of 849 unrelated participants with multiple CaLMs, lacking pathogenic/likely pathogenic NF1 and SPRED1 variants, underwent RASopathy gene panel sequencing.
Am J Hum Genet
September 2024
While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis.
View Article and Find Full Text PDFInfantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation.
View Article and Find Full Text PDFPurpose: variants in (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism.
Methods: Genetic data and detailed clinical records were collected via multi-center collaboration.
The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems.
View Article and Find Full Text PDFPrompt diagnosis of complex phenotypes is a challenging task in clinical genetics. Whole exome sequencing has proved to be effective in solving such conditions. Here, we report on an unpredictable presentation of Werner Syndrome (WRNS) in a 12-year-old girl carrying a homozygous truncating variant in RECQL2, the gene mutated in WRNS, and a de novo activating missense change in PTPN11, the major Noonan syndrome gene, encoding SHP2, a protein tyrosine phosphatase positively controlling RAS function and MAPK signaling, which have tightly been associated with senescence in primary cells.
View Article and Find Full Text PDFAm J Hum Genet
November 2021
Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome.
View Article and Find Full Text PDFNeurofibromatosis 1 (NF1) is a disorder characterized by variable expressivity caused by loss-of-function variants in NF1, encoding neurofibromin, a protein negatively controlling RAS signaling. We evaluated whether concurrent variation in proteins functionally linked to neurofibromin contribute to the variable expressivity of NF1. Parallel sequencing of a RASopathy gene panel in 138 individuals with molecularly confirmed clinical diagnosis of NF1 identified missense variants in PTPN11, encoding SHP2, a positive regulator of RAS signaling, in four subjects from three unrelated families.
View Article and Find Full Text PDFLeukodystrophies are a heterogeneous group of rare inherited disorders that mostly involve the white matter of the CNS. These conditions are characterized by primary glial cell and myelin sheath pathology of variable aetiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in five large consanguineous nuclear families allowed us to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness.
View Article and Find Full Text PDFAm J Hum Genet
March 2021
Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms.
View Article and Find Full Text PDFSignal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.
View Article and Find Full Text PDFSHOC2 is a scaffold protein mediating RAS-promoted activation of mitogen-activated protein kinase (MAPK) signaling in response to extracellular stimuli. A recurrent activating mutation in SHOC2 (p.Ser2Gly) causes Mazzanti syndrome, a RASopathy characterized by features resembling Noonan syndrome and distinctive ectodermal abnormalities.
View Article and Find Full Text PDFNoonan syndrome (NS), the most common RASopathy, is caused by mutations affecting signaling through RAS and the MAPK cascade. Recently, genome scanning has discovered novel genes implicated in NS, whose function in RAS-MAPK signaling remains obscure, suggesting the existence of unrecognized circuits contributing to signal modulation in this pathway. Among these genes, leucine zipper-like transcriptional regulator 1 (LZTR1) encodes a functionally poorly characterized member of the BTB/POZ protein superfamily.
View Article and Find Full Text PDFRASopathies are a group of rare, clinically related conditions affecting development and growth, and are caused by germline mutations in genes encoding signal transducers and modulators with a role in the RAS signaling network. These disorders share facial dysmorphia, short stature, variable cognitive deficits, skeletal and cardiac defects, and a variable predisposition to malignancies. Here, we report on a de novo 10-nucleotide-long deletion in HRAS (c.
View Article and Find Full Text PDFSHOC2 is a scaffold protein composed almost entirely by leucine-rich repeats (LRRs) and having an N-terminal region enriched in alternating lysine and glutamate/aspartate residues (KEKE motifs). SHOC2 acts as a positive modulator of the RAS-RAF-MEK-ERK signalling cascade by favouring stable RAF1 interaction with RAS. We previously reported that the p.
View Article and Find Full Text PDFSaposin (Sap) C deficiency is a rare variant form of Gaucher disease caused by impaired Sap C expression or accelerated degradation, and associated with accumulation of glucosylceramide and other lipids in the endo/lysosomal compartment. No effective therapies are currently available for the treatment of Sap C deficiency. We previously reported that a reduced amount and enzymatic activity of cathepsin (Cath) B and Cath D, and defective autophagy occur in Sap C-deficient fibroblasts.
View Article and Find Full Text PDFSaposin (Sap) C is an essential cofactor for the lysosomal degradation of glucosylceramide (GC) by glucosylceramidase (GCase) and its functional impairment underlies a rare variant form of Gaucher disease (GD). Sap C promotes rearrangement of lipid organization in lysosomal membranes favoring substrate accessibility to GCase. It is characterized by six invariantly conserved cysteine residues involved in three intramolecular disulfide bonds, which make the protein remarkably stable to acid environment and degradation.
View Article and Find Full Text PDFSaposin C deficiency, a rare variant form of Gaucher disease, is due to mutations in the prosaposin gene (PSAP) affecting saposin C expression and/or function. We previously reported that saposin C mutations affecting one cysteine residue result in autophagy dysfunction. We further demonstrated that the accumulation of autophagosomes, observed in saposin C-deficient fibroblasts, is due to an impairment of autolysosome degradation, partially caused by the reduced amount and enzymatic activity of CTSB (cathepsin B) and CTSD (cathepsin D).
View Article and Find Full Text PDFSaposin (Sap) C deficiency, a rare variant form of Gaucher disease, is due to mutations in the Sap C coding region of the prosaposin (PSAP) gene. Sap C is required as an activator of the lysosomal enzyme glucosylceramidase (GCase), which catalyzes glucosylceramide (GC) degradation. Deficit of either GCase or Sap C leads to the accumulation of undegraded GC and other lipids in lysosomes of monocyte/macrophage lineage.
View Article and Find Full Text PDF