Most autoinflammatory diseases are caused by mutations in innate immunity genes. Previously, four variants in the RHO GTPase CDC42 were discovered in patients affected by syndromes generally characterized by neonatal-onset of cytopenia and auto-inflammation, including hemophagocytic lymphohistiocytosis and rash in the most severe form (NOCARH syndrome). However, the mechanisms responsible for these phenotypes remain largely elusive.
View Article and Find Full Text PDFRAC1 is a member of the Rac/Rho GTPase subfamily within the RAS superfamily of small GTP-binding proteins, comprising 3 paralogs playing a critical role in actin cytoskeleton remodeling, cell migration, proliferation and differentiation. De novo missense variants in RAC1 are associated with a rare neurodevelopmental disorder (MRD48) characterized by DD/ID and brain abnormalities coupled with a wide range of additional features. Structural and functional studies have documented either a dominant negative or constitutively active behavior for a subset of mutations.
View Article and Find Full Text PDFVesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding.
View Article and Find Full Text PDFWe have recently provided new evidence for a role of p75NTR receptor and its preferential ligand proNGF in amplifying inflammatory responses in synovial mononuclear cells of chronic arthritis patients. In the present study, to better investigate how activation of the p75NTR/proNGF axis impacts synovial inflammation, we have studied the effects of proNGF on fibroblast-like synoviocytes (FLS), which play a central role in modulating local immune responses and in activating pro-inflammatory pathways. Using single cell RNA sequencing in synovial tissues from active and treatment-naïve rheumatoid arthritis (RA) patients, we demonstrated that p75NTR and sortilin, which form a high affinity receptor complex for proNGF, are highly expressed in PRG4 lining and THY1COL1A1 sublining fibroblast clusters in RA synovia but decreased in RA patients in sustained clinical remission.
View Article and Find Full Text PDFJ Allergy Clin Immunol
July 2022
Background: Pathogenic missense variants in cell division control protein 42 (CDC42) differentially affect protein function, causing a clinically wide phenotypic spectrum variably affecting neurodevelopment, hematopoiesis, and immune response. More recently, 3 variants at the C-terminus of CDC42 were proposed to similarly impact protein function and cause a novel autoinflammatory disorder.
Objectives: We sought to clinically and functionally classify these variants to improve patient management.
Hemophagocytic lymphohistiocytosis (HLH) is characterized by immune dysregulation due to inadequate restraint of overactivated immune cells and is associated with a variable clinical spectrum having overlap with more common pathophysiologies. HLH is difficult to diagnose and can be part of inflammatory syndromes. Here, we identify a novel hematological/autoinflammatory condition (NOCARH syndrome) in four unrelated patients with superimposable features, including neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and HLH.
View Article and Find Full Text PDFNoonan syndrome (NS), the most common RASopathy, is caused by mutations affecting signaling through RAS and the MAPK cascade. Recently, genome scanning has discovered novel genes implicated in NS, whose function in RAS-MAPK signaling remains obscure, suggesting the existence of unrecognized circuits contributing to signal modulation in this pathway. Among these genes, leucine zipper-like transcriptional regulator 1 (LZTR1) encodes a functionally poorly characterized member of the BTB/POZ protein superfamily.
View Article and Find Full Text PDFAm J Hum Genet
February 2018
SHOC2 is a scaffold protein composed almost entirely by leucine-rich repeats (LRRs) and having an N-terminal region enriched in alternating lysine and glutamate/aspartate residues (KEKE motifs). SHOC2 acts as a positive modulator of the RAS-RAF-MEK-ERK signalling cascade by favouring stable RAF1 interaction with RAS. We previously reported that the p.
View Article and Find Full Text PDFLoss-of-function mutations in PAK3 contribute to non-syndromic X-linked intellectual disability (NS-XLID) by affecting dendritic spine density and morphology. Linkage analysis in a three-generation family with affected males showing ID, agenesis of corpus callosum, cerebellar hypoplasia, microcephaly and ichthyosis, revealed a candidate disease locus in Xq21.33q24 encompassing over 280 genes.
View Article and Find Full Text PDFThe tyrosine kinase Tie-2 and its ligands Angiopoietins (Angs) transduce critical signals for angiogenesis in endothelial cells. This receptor and Ang-1 are coexpressed in hematopoietic stem cells and in a subset of megakaryocytes, though a possible role of angiopoietins in megakaryocytic differentiation/proliferation remains to be demonstrated. To investigate a possible effect of Ang-1/Ang-2 on megakaryocytic proliferation/differentiation we have used both normal CD34(+) cells induced to megakaryocytic differentiation and the UT7 cells engineered to express the thrombopoietin receptor (TPOR, also known as c-mpl, UT7/mpl).
View Article and Find Full Text PDFThe mechanisms of cell killing by oxidative stress, in particular by hydrogen peroxide, are not yet well clarified. Here, we show that during recovery after H(2)O(2) treatment, apoptosis occurs in two different waves, peaking at 8 h (early) and 18 h (late) of recovery from oxidative stress. The two peaks are differentially modulated by a set of inhibitors of metabolic processes, which suggests that the first peak depends on DNA break formation, whereas the second may be correlated with H(2)O(2)-induced mitochondrial alterations.
View Article and Find Full Text PDFPrevious studies suggested an important role for vascular endothelial growth factor (VEGF) and its receptors in postnatal haemopoiesis. However, it is unclear how VEGF receptor (VEGFR) signalling could interact with that issued from the activation of haematopoietic growth factor receptors. To elucidate this point we explored VEGF-R2 and granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) membrane localization and cell signalling in TF1-KDR cells (TF1 leukaemic cells that overexpress VEGF-R2/KDR).
View Article and Find Full Text PDFThe very early events of the intrinsic, damage-induced apoptotic pathway, i.e., upstream to Bax activation, probably consist of physico-chemical alterations (i.
View Article and Find Full Text PDFThapsigargin (THG), a selective inhibitor of endoplasmic reticulum (ER) Ca2+-ATPases, causes the rapid emptying of ER Ca2+; in some cell types, this is accompanied by apoptosis, whereas other cells maintain viability. In order to understand the molecular determinants of such a different behavior, we explored the role of oxygen versus nitrogen radicals, by analyzing the apoptogenic ability of THG in the presence of inhibitors of glutathione or nitric oxide (NO) synthesis, respectively. We observed that oxygen radicals play a sensitizing role whereas nitrogen radicals prevent THG-dependent apoptosis, showing that the apoptogenic effect of THG is redox sensitive.
View Article and Find Full Text PDFGlutathione depletion by inhibition of its synthesis with buthionine sulfoximine (BSO) is a focus of the current research in antitumor therapy, BSO being used as chemosensitizer. We had previously shown that two human tumor cell lines (U937 and HepG2) survive to treatment with BSO: BSO can elicit an apoptotic response, but the apoptotic process is aborted after cytochrome c release and before caspase activation, suggesting the development of an adaptive response (FASEB J., 1999, 13, 2031-2036).
View Article and Find Full Text PDFHematopoietic (Hem) and endothelial (End) lineages derive from a common progenitor cell, the hemangioblast: specifically, the human cord blood (CB) CD34+KDR+ cell fraction comprises primitive Hem and End cells, as well as hemangioblasts. In humans, the potential therapeutic role of Hem and End progenitors in ischemic heart disease is subject to intense investigation. Particularly, the contribution of these cells to angiogenesis and cardiomyogenesis in myocardial ischemia is not well established.
View Article and Find Full Text PDFCancer Gene Ther
April 2004
The utility of dominant acting proapoptotic molecules to induce cell death in cancer cells is being evaluated in preclinical studies and clinical trials. We recently developed a binary adenoviral expression system to enable the efficient gene transfer of Bax and other proapoptotic molecules. Using this system, overexpression of Bax protein in four non-small-cell lung cancer (NSCLC) cell lines, H1299, A549, H226 and H322, was evaluated.
View Article and Find Full Text PDFBiochem Pharmacol
October 2003
Treatment with drugs designed to inhibit the HIV protease ameliorates immune functions in AIDS patients, reducing cell deletion by apoptosis even in the absence of inhibition of viral spread. This suggests that they interact with the intrinsic apoptotic signaling. We found that caspases, the main executioner of the apoptotic process, are not directly inhibited.
View Article and Find Full Text PDFPostnatal CD34(+) cells expressing vascular endothelial growth factor receptor 2 (KDR) generate hematopoietic or endothelial progeny in different in vitro and in vivo assays. Hypothetically, CD34(+)KDR(+) cells may comprise hemangioblasts bipotent for both lineages. This hypothesis is consistent with 2 series of experiments.
View Article and Find Full Text PDF