98%
921
2 minutes
20
Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985417 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2017.12.015 | DOI Listing |
iScience
September 2025
Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Cdc42 is a Rho-family GTPase that controls cell polarization from yeast to human cells. In fission yeast, under normal growth conditions, Cdc42-GTP oscillates between cell tips to promote polarized growth. However, when exposed to environmental stressors, Cdc42 adopts an "exploratory" pattern of Cdc42 activation along the cell membrane.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Spine Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China.
Spinal cord injury (SCI) represents one of the recognized difficulties, and its pathological mechanisms remain unclear. Aberrant regulation of the RNA-binding protein (RBP) and selective splicing are associated with SCI. Nonetheless, the mechanisms of RBP regulation and abnormal selective splicing events associated with SCI are unexplored.
View Article and Find Full Text PDFInt J Radiat Biol
September 2025
Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
Purpose: The effects of ionizing radiation on living organisms are mainly known as the generation of reactive oxygen species (ROS), apoptosis, and DNA damage. Small GTPases (RhoA, Rac1, Cdc42) are known to have roles in the regulation of oxidative stress and apoptosis. The aim of this study was to investigate the role of the RhoA molecule in testicular tissue damage due to oxidative stress and apoptosis induced by ionizing radiation.
View Article and Find Full Text PDFJ Biol Chem
August 2025
Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34293 Montpellier cedex 5, France. Electronic address:
Adult-bone homeostasis is maintained through the reciprocal actions of osteoclasts and osteoblasts, which respectively resorb and deposit new bone. Excessive osteoclast activity leads to bone loss and contributes to conditions like osteoporosis. Osteoclasts form a specialized adhesion structure called the actin ring that is crucial for bone resorption and relies on both the actin and microtubule cytoskeletons.
View Article and Find Full Text PDFPoult Sci
August 2025
College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:
In order to investigate the basic genetic structure of plumage colour in Jingyuan chicken and to explore the genetic markers for plumage colour development, the present study was carried out to investigate the candidate key SNPs and candidate genes regulating black, linen and white plumage and plumage traits of Jingyuan chicken by using selection signal analysis and genome-wide association analysis. Selection signal analyses showed that including 30, 40 and 18 overlapping genes were associated with black, linen and white plumage colours in Jingyuan chicken. Meanwhile, integrative genomic analyses identified BCAT1, LMO3, and PIK3C2G as primary candidates for black plumage, and IL1RAPL1 for white plumage, with all genes showing convergent support across multiple complementary approaches.
View Article and Find Full Text PDF