98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP286406 | DOI Listing |
J Cachexia Sarcopenia Muscle
October 2025
Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea.
Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.
Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.
ERJ Open Res
September 2025
Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France.
https://bit.ly/44RG0XW.
View Article and Find Full Text PDFBioact Mater
December 2025
Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial.
View Article and Find Full Text PDFJ Neurochem
September 2025
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.
View Article and Find Full Text PDFNeurol Genet
October 2025
Department of Neurology, National Taiwan University Hospital, Taipei.
Background And Objectives: Vascular NOTCH3 extracellular domain (NOTCH3ECD) deposition is the pathologic hallmark of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to explore the relationships among the NOTCH3ECD deposition load, the variant genotype, and cerebral small vessel disease (SVD) severity.
Methods: Fifty-four individuals carrying pathogenic variants were enrolled and underwent skin biopsy for the quantification of dermal vascular NOTCH3ECD deposition load using immunohistochemical staining.