98%
921
2 minutes
20
Background: Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection. However, they provide only one output signal, resulting in poor sensitivity and accuracy. Dual-channel ratiometric colorimetric method based on the peroxidase-like activity of nanozyme can achieve self-calibration by recording two reverse signals, providing significantly enhanced sensitivity and accuracy.
Results: CeO nanocages (CeO NCs) with tetra-enzyme mimetic activities (oxidase-, peroxidase-, catalase- and superoxide dismutase-like activities) were facilely synthesized using zeolitic imidazolate framework-67 (ZIF-67) as sacrificial template. The peroxidase-like activity of CeO NCs can be regulated by DNA, and it showed opposite response to two chromogenic substrates (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB)), which was mainly attributed to the changed affinity. On the basis of MC-LR aptamer-tunable peroxidase-like activity of CeO NCs in TMB and ABTS channel, a dual-channel ratiometric colorimetric aptasensor was constructed for detection of MC-LR. Compared with conventional single-signal colorimetric assays, the proposed method showed lower limit of detection (0.66 pg mL) and significantly enhanced sensitivity. Moreover, the practicability of the ratiometric colorimetric assay was demonstrated by detecting MC-LR in real water samples, and satisfactory recoveries (94.9-101.9 %) and low relative standard deviations (1.6-6.3 %) were obtained.
Significance: This work presents a nanozyme-based ratiometric colorimetric aptasensor for MC-LR detection by recording the reverse responses of two chromogenic reactions. Benefiting from the self-calibration function, the method can achieve higher sensitivity and accuracy. The short detection time and practical application in real water samples show great potential for environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.342599 | DOI Listing |
Mikrochim Acta
September 2025
Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.
View Article and Find Full Text PDFEnviron Res
September 2025
Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, 650224, Yunnan, China.
Cellulose is the most abundant renewable biomass resource on Earth, with good biodegradability and biocompatibility. In this study, a novel cellulose-based near-infrared fluorescent probe MN@NIR for ClO detection was developed by amination modification of microcrystalline cellulose (MCC), followed by the introduction of naphthalimide fluorophores and dicyanoisophorone groups. The probe MN@NIR exhibits excellent fluorescence properties with dual-emission peaks at 543 nm and 690 nm, the latter falling within the near-infrared (NIR) window.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, Electronic Information School, Wuhan University, Wuhan, 430072, China.
Accurate and rapid detection of urinary creatinine (CR) is critical for early kidney disease screening and efficient healthcare resource management. In this study, a novel colorimetric-fluorescent sensor is developed by integrating nitrogen-doped carbon dots (N-CDs) and copper nanoclusters (CuNCs) with gold nanoparticles (AuNPs), leveraging fluorescence resonance energy transfer (FRET) to enhance sensitivity and selectivity. The sensor functions within a detection range of 1-50 mm, with peak responsiveness at 17 mm, utilizing paper-based substrates for a low-cost and portable application.
View Article and Find Full Text PDFBiosensors (Basel)
August 2025
School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
The detection of aliphatic and aromatic biogenic amines (BAs) is important in food spoilage, environmental monitoring, and disease diagnosis and treatment. Existing fluorescent probes predominantly detect aliphatic BAs with single signal variation and low sensitivity, impairing the adaptability of discriminative sensing platforms. Herein, we present a visual chemosensor (galactose-functionalized pyrrolopyrrole -BODIPY, ) that simultaneously detects eight aliphatic and aromatic BAs in a real-time and intuitive way based on their unique electronic and structural features.
View Article and Find Full Text PDFJ Fluoresc
August 2025
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, P.R. China.
Secondary development of fluorescent probes can fully exploit the optical advantages of existing probes while avoiding resource wastage from redundant research and development. This paper investigates the metal ion recognition properties of a reported probe (BDF) in methanol solution. Upon addition of Fe, the probe solution exhibits a distinct color change from light blue to pale pink, accompanied by a 55nm blue shift in the maximum absorption wavelength.
View Article and Find Full Text PDF