98%
921
2 minutes
20
. Conventional computed tomography (CT) imaging does not provide quantitative information on local thermal changes during percutaneous ablative therapy of cancerous and benign tumors, aside from few qualitative, visual cues. In this study, we have investigated changes in CT signal across a wide range of temperatures and two physical phases for two different tissue mimicking materials, each.. A series of experiments were conducted using an anthropomorphic phantom filled with water-based gel and olive oil, respectively. Multiple, clinically used ablation devices were applied to locally cool or heat the phantom material and were arranged in a configuration that produced thermal changes in regions with inconsequential amounts of metal artifact. Eight fiber optic thermal sensors were positioned in the region absent of metal artifact and were used to record local temperatures throughout the experiments. A spectral CT scanner was used to periodically acquire and generate electron density weighted images. Average electron density weighted values in 1 mmvolumes of interest near the temperature sensors were computed and these data were then used to calculate thermal volumetric expansion coefficients for each material and phase.. The experimentally determined expansion coefficients well-matched existing published values and variations with temperature-maximally differing by 5% of the known value. As a proof of concept, a CT-generated temperature map was produced during a heating time point of the water-based gel phantom, demonstrating the capability to map changes in electron density weighted signal to temperature.. This study has demonstrated that spectral CT can be used to estimate local temperature changes for different materials and phases across temperature ranges produced by thermal ablations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad45a3 | DOI Listing |
Phys Rev Lett
August 2025
University of Texas at Austin, Department of Physics, Austin, Texas 78712, USA.
We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, Hefei, Anhui 230026, China.
The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).
View Article and Find Full Text PDFVector Borne Zoonotic Dis
September 2025
Department of Mechanical Engineering, Yeungnam University, Gyeongsan, Korea.
In view of Corona pandemic, scientists have taken significant efforts to study and recognize the peculiarities of the SARS-CoV-2 outbreak in order to prevent it from spreading. It was discovered that the virus is spreading in many places and nations that have made significant progress in addressing environmental pollution or are not subject to dusty storms. Infections are growing again in the same country, with varied densities of sick persons depending on the weather and windy season.
View Article and Find Full Text PDFNanoscale
September 2025
Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.
The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.
Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.
View Article and Find Full Text PDF