98%
921
2 minutes
20
Identifying the sources of polycyclic aromatic hydrocarbons (PAHs) in complex environmental matrices is essential for understanding the impact of combustion-related human activities on the environment. Since the turn of the century, advances in analytical capability and accuracy of accelerator mass spectrometry (AMS) have made it possible to accurately determine the source apportionment of PAHs based on their radiocarbon (C) mass conservation. This also allows us to trace the environmental transport processes of PAHs from the perspective of molecular C. However, natural environmental matrices have very low concentrations of PAHs (ppb to ppm level). To meet the requirements of carbon weight for C measurement by AMS, trace PAHs in complex environmental matrices must be enriched thousands of times, and then higher purity individual PAH molecules should be obtained through a series of complex purification procedures. Therefore, the technical difficulty is the main challenge in expanding the application of compound-specific C analysis in environmental science. This article reviews the detailed pretreatment procedures for C measurement of specific PAHs, including sample enrichment, extraction and purification of aromatic components, preparation of compound-specific PAHs by preparative capillary gas chromatography, graphitization of samples with ultra-small carbon content, and relevant quality control and assurance procedures. This study aims to help environmental geoscientists understand the technical process of C analysis of PAHs and inspire new scientific questions related to environmental science. To our knowledge, this is the first comprehensive review of the technical method of compound-specific C analysis for PAHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124050 | DOI Listing |
J Sep Sci
September 2025
Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.
View Article and Find Full Text PDFEnviron Res
September 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll
The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
A novel vacuum ultraviolet (VUV)-activated sodium percarbonate (SPC) system (VUV/SPC) was developed for efficient degradation of micropollutants such as phenol. The VUV/SPC system achieved 98.4 % phenol removal within 3 min, with pseudo-first-order rate constants 4.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:
We report a novel and highly effective UV-Vis sensing platform based on plasmonic copper (II) sulfide-capsulated polystyrene nanoparticles (PS@CuS NPs) for the rapid, ultrasensitive, and selective detection of Hg . The detection mechanism is driven by a specific anion-exchange reaction between Hg and CuS, resulting in the in-situ transformation of plasmonic CuS into non-plasmonic HgS, which induces a distinct and quantifiable shift in UV-Vis absorption. This structural and optical evolution enables the platform to achieve an exceptionally low detection limit of 20 pM within just 5 min, far below most regulatory thresholds, and a wide linear detection range from 20 pM to 30 nM.
View Article and Find Full Text PDFFood Chem
September 2025
School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China. Electronic address: zh
In this study, a novel carbon dots-based system was developed for the sequential quantification of Au and L-cysteine (L-Cys). The system comprises N,F-doped carbon dots (N,F-CDs), a custom-designed miniaturized fluorimeter, and test strips. The N,F-CDs exhibit outstanding optical properties, including a large Stokes shift (127 nm) and high fluorescence intensity.
View Article and Find Full Text PDF