98%
921
2 minutes
20
In diverse realms of research, such as holographic optical tweezer mechanical measurements, colloidal particle motion state examinations, cell tracking, and drug delivery, the localization and analysis of particle motion command paramount significance. Algorithms ranging from conventional numerical methods to advanced deep-learning networks mark substantial strides in the sphere of particle orientation analysis. However, the need for datasets has hindered the application of deep learning in particle tracking. In this work, we elucidated an efficacious methodology pivoted toward generating synthetic datasets conducive to this domain that resonates with robustness and precision when applied to real-world data of tracking 3D particles. We developed a 3D real-time particle positioning network based on the CenterNet network. After conducting experiments, our network has achieved a horizontal positioning error of 0.0478 μm and a z-axis positioning error of 0.1990 μm. It shows the capability to handle real-time tracking of particles, diverse in dimensions, near the focal plane with high precision. In addition, we have rendered all datasets cultivated during this investigation accessible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054292 | PMC |
http://dx.doi.org/10.3390/s24082583 | DOI Listing |
J Med Internet Res
September 2025
Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.
View Article and Find Full Text PDFHeart Rhythm
September 2025
Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain; CIBERCV, Madrid, España. Electronic address:
Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.
Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.
Cancer Pathog Ther
September 2025
Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, United States.
Background: Stereotactic body radiotherapy (SBRT) is an effective treatment for early-stage non-small cell lung cancer. However, patient breathing can affect treatment accuracy. Therefore, this study aimed to develop a bi-polar (BP) gated motion management strategy for SBRT and evaluate its feasibility geometrically and dosimetrically.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:
Ingestible biosensors represent a transformative advancement in the field of personalized health monitoring, offering real-time insights into digestive health and nutritional status. These innovative devices, designed to travel through the gastrointestinal tract, are equipped with miniaturized sensors capable of detecting and analysing key biomarkers related to digestion and nutrient absorption. By providing continuous, non-invasive monitoring, ingestible biosensors enable early detection of gastrointestinal (GI) disorders, personalized dietary adjustments, and enhanced understanding of gut microbiota dynamics.
View Article and Find Full Text PDF