Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A compact Ka-band antenna array has been proposed to realize broadband and high gain for millimeter-wave applications. The antenna array is divided into a multilayer composed of a driven slot patch layer and a parasitic patch array layer, which is excited by a mixed CPW-Slot-Couple feeding network layer. According to characteristic mode analysis, a pair of narrow coupling slots are introduced in the driven patch to move the resonant frequency of characteristic mode 3 to the resonant frequency of characteristic mode 2 for enhanced bandwidth. In this article, a 1to4 CPW-Slot-Couple feeding network for a 2 × 2 driven slot patch array is implemented, and then each driven slot patch excites a 2 × 2 parasitic patch array. Finally, a proposed 4 × 4 × 3 (row × column × layer) Ka-band antenna array is fabricated to verify the design concepts. The measured results show that the frequency bandwidth of the antenna array is 25 GHz to 32 GHz, and the relative bandwidth is 24.5%. The peak gain is 20.1 dBi. Due to its attractive properties of miniaturization, broadband, and high gain, the proposed antenna array could be applied to millimeter-wave wireless communication systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051746PMC
http://dx.doi.org/10.3390/mi15040535DOI Listing

Publication Analysis

Top Keywords

antenna array
24
cpw-slot-couple feeding
12
feeding network
12
driven slot
12
slot patch
12
patch array
12
characteristic mode
12
array
9
mixed cpw-slot-couple
8
ka-band antenna
8

Similar Publications

Objective: To develop a deep learning method for fast and accurate prediction of Specific Absorption Rate (SAR) distributions in the human head to support real-time hyperthermia treatment planning (HTP) of brain cancer patients.

Approach: We propose an encoder-decoder neural network with cross-attention blocks to predict SAR maps from brain electrical properties, tumor 3D isocenter coordinates and microwave antenna phase settings. A dataset of 201 simulations was generated using finite-element modeling by varying tissue properties, tumor positions, and antenna phases within a human head model equipped with a three-ring phased-array applicator.

View Article and Find Full Text PDF

Photonic terahertz phased array via selective excitation of nonlinear Pancharatnam-Berry elements.

Nat Commun

September 2025

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.

Phased arrays are crucial in various technologies, such as radar and wireless communications, due to their ability to precisely control and steer electromagnetic waves. This precise control improves signal processing and enhances imaging performance. However, extending phased arrays to the terahertz (THz) frequency range has proven challenging, especially for high-frequency operation, broadband performance, two-dimensional (2D) phase control with large antenna arrays, and flexible phase modulation.

View Article and Find Full Text PDF

This study explores the potential of Bloch surface waves (BSWs) at the interface of a finite one-dimensional photonic crystal (1D-PC) and vacuum, exploiting spectroscopic ellipsometry in a range that encompasses the mid-infrared (4000 cm to 200 cm). BSWs can be excited in both σ and π polarizations, which in the ellipsometric configuration can be detected at the same time, presenting distinct advantages for sensor applications targeting the growth of thin solid films and molecular monolayers, surface-adsorbed gas molecules, and liquid droplets. Compared to other sensing techniques exploiting mid-infrared vibrational absorption lines for chemical-specific sensitivity, like waveguides, nano-antenna arrays, metasurfaces, attenuated total reflectance (ATR) in crystals or in optical fibers, the present approach features high field enhancements, strong field confinement, and large quality factors of the resonances, all while relying on a rather simple and potentially low-cost configuration.

View Article and Find Full Text PDF

Observation of nonlinear edge states in an interacting atomic trimer array.

Light Sci Appl

August 2025

State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.

Exploring the interplay between topology and nonlinearity leads to an emerging field of nonlinear topological physics, which extends the study of fascinating properties of topological states to a regime where interactions between the particles cannot be neglected. For ultracold atomic systems, although many exotic topological states have been recently observed, the nonlinear effect remains elusive. Here, based on the laser-driven couplings of discrete atomic momentum states, we synthesize a topological trimer array, where the atomic interactions give rise to tunable nonlinearities.

View Article and Find Full Text PDF

Wireless Communication Using a Radiation-Type Metasurface.

Micromachines (Basel)

August 2025

School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.

The rapid development of metasurfaces offers new possibilities to establish novel wireless communication systems with simplified architectures. However, the current demonstration systems are based on the reflection-type metasurfaces, which suffer from high profiles and integration challenges in practice. Such configurations are also inefficient for handling multiple subcarriers during beam scanning and beam tracking.

View Article and Find Full Text PDF