Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics.

New Method: Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation.

Results: Myenteric plexus cells isolated from the entire length of adult murine small intestine formed ≥3000 neurospheres within 7 days. Matrigel-embedded neurospheres exhibited abundant neural stem and progenitor cells expressing Sox2, Sox10 and Msi1 by day 4. By day 5, neural progenitor cell marker Nestin appeared in the periphery of neurospheres prior to differentiation. Neurospheres produced extensive neurons and neurites, confirmed by Tubulin beta III, PGP9.5, HuD/C, and NeuN immunofluorescence, including neural subtypes Calretinin, ChAT, and nNOS following 8 days of differentiation. Individual neurons within and external to neurospheres generated depolarization induced action potentials which were inhibited in the presence of sodium channel blocker, Tetrodotoxin. Differentiated neurospheres also contained a limited number of glia and endothelial cells.

Comparison With Existing Methods: This novel one-step neurosphere growth and differentiation culture system, in 3D format (in the presence of GDNF, EGF, and FGF2), allows for ∼2-fold increase in neurosphere count in the derivation of enteric neurons with measurable action potentials.

Conclusion: Our method describes a novel, robust 3D culture of electrophysiologically active enteric neurons from adult myenteric neural stem and progenitor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144385PMC
http://dx.doi.org/10.1016/j.jneumeth.2024.110144DOI Listing

Publication Analysis

Top Keywords

enteric neurons
12
progenitor cells
12
neurospheres
8
neural progenitor
8
neural stem
8
stem progenitor
8
enteric
6
neurons
6
neural
6
novel method
4

Similar Publications

The enteric nervous system (ENS) is the intrinsic nervous system of the gut and controls essential functions, such as gut motility, intestinal barrier function, and water balance. The ENS displays a complex 3D architecture within the context of the gut and specific transcriptional states needed to control gut homeostasis. During development, the ENS develops from enteric neural progenitor cells (ENPs) that migrate into the gut and differentiate into functionally diverse neuron types.

View Article and Find Full Text PDF

Aggregates of the protein α-synuclein may initially form in the gut before propagating to the brain in Parkinson's disease. Indeed, our prior work supports that enteroendocrine cells, specialized intestinal epithelial cells, could play a key role in the development of this disease. Enteroendocrine cells natively express α-synuclein and synapse with enteric neurons as well as the vagus nerve.

View Article and Find Full Text PDF

Background & Aims: Formylated peptide receptors 1 and 2 (Fpr1/2 or FPRs) are G-protein-coupled pattern recognition receptors that bind bacterial formylated peptides. The role of FPRs in enteric nervous system (ENS) development and gastrointestinal (GI) motility is unknown.

Methods: We generated mice with germline, epithelial-, and neural crest-specific deletion of the Fpr1/2 locus and assessed ENS structure and GI motility.

View Article and Find Full Text PDF

A combined enteric neuron-gastric tumor organoid reveals metabolic vulnerabilities in gastric cancer.

Cell Stem Cell

August 2025

Centre for Oncology and Immunology, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China; Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. Electronic address:

The discrepancy between organoid and immortalized cell line cultures for cancer target discovery remains unclear. Here, our multi-tiered clustered regularly interspaced short palindromic repeats (CRISPR) screens reveal in vivo-relevant metabolic dependencies and synthetic lethal pairs that can be uncovered with tumor organoids but not cell lines or even three-dimensional (3D) spheroids. These screens identify lanosterol synthase and acetyl-coenzyme A (CoA) carboxylase inhibitors as effective treatments that impede xenografted tumor growth in mice.

View Article and Find Full Text PDF

Signals from the gut enhance pancreatic secretion of insulin and thus influence glucose metabolism. This phenomenon, known as the incretin effect, is thought to be mediated by hormones secreted from enteroendocrine cells. The endocrine model, however, does not fully capture the complexity of gut-pancreas interactions.

View Article and Find Full Text PDF