Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inherited arrhythmia disorders account for a significant proportion of sudden cardiac death, particularly among young individuals. Recent advances in our understanding of these syndromes have improved patient diagnosis and care, yet certain clinical gaps remain, particularly within case ascertainment, access to genetic testing, and risk stratification. Artificial intelligence (AI), specifically machine learning and its subset deep learning, present promising solutions to these challenges. The capacity of AI to process vast amounts of patient data and identify disease patterns differentiates them from traditional methods, which are time- and resource-intensive. To date, AI models have shown immense potential in condition detection (including asymptomatic/concealed disease) and genotype and phenotype identification, exceeding expert cardiologists in these tasks. Additionally, they have exhibited applicability for general population screening, improving case ascertainment in a set of conditions that are often asymptomatic such as left ventricular dysfunction. Third, models have shown the ability to improve testing protocols; through model identification of disease and genotype, specific clinical testing (eg, drug challenges or further diagnostic imaging) can be avoided, reducing health care expenses, speeding diagnosis, and possibly allowing for more incremental or targeted genetic testing approaches. These significant benefits warrant continued investigation of AI, particularly regarding the development and implementation of clinically applicable screening tools. In this review we summarize key developments in AI, including studies in long QT syndrome, Brugada syndrome, hypertrophic cardiomyopathy, and arrhythmogenic cardiomyopathies, and provide direction for effective future AI implementation in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cjca.2024.04.014DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
inherited arrhythmia
8
case ascertainment
8
genetic testing
8
disease genotype
8
applying artificial
4
intelligence phenotyping
4
phenotyping inherited
4
arrhythmia syndromes
4
syndromes inherited
4

Similar Publications

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Background: As populations age, informal caregivers play an increasingly vital role in long-term care, with 80% of care provided by family members in Europe. However, many individuals do not immediately recognize themselves as caregivers, especially in the early stages. This lack of awareness can increase physical and emotional stress and delay access to support services.

View Article and Find Full Text PDF

Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF

The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.

View Article and Find Full Text PDF