98%
921
2 minutes
20
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030239 | PMC |
http://dx.doi.org/10.1101/2024.04.04.588162 | DOI Listing |
J Craniofac Surg
September 2025
Department of Neurological Sciences, Division of Maxillofacial Surgery, Marche University Hospital, Ancona.
Orthognathic surgery has undergone considerable evolution, marked by increasing prevalence and improved patient experience. Key advancements include shifting aesthetic ideals, the integration of digital technologies for surgical planning, and a growing emphasis on minimally invasive techniques. This study aimed to promote single-maxillary orthognathic surgery by implementing a novel, fully digital workflow protocol to reduce invasiveness.
View Article and Find Full Text PDFCell Death Differ
September 2025
Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
Nucleotide metabolism is essential for fundamental cellular functions such as growth, repair and proliferation. Emerging evidence suggests that metabolic pathways also influence programmed cell death (PCD), though the underlying mechanisms remain poorly understood. One model organism that has provided key insights into the regulation of PCD is Caenorhabditis elegans (C.
View Article and Find Full Text PDFMol Cell Endocrinol
September 2025
Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression and RNA processing during mammalian oocyte development. SERPINE1 mRNA-binding protein 1 (SERBP1), a conserved RNA-binding protein (RBP), exhibits prominent expression in the female reproductive system and throughout oogenesis. Conditional deletion of Serbp1 using oocyte-specific Zp3/Gdf9-Cre drivers resulted in arrested oocyte growth, female infertility, and failure of blastocyst formation from two-cell embryos.
View Article and Find Full Text PDFNat Phys
April 2025
Whitman Center, Marine Biological Laboratory, Woods Hole, USA.
Evolution of multicellularity from early unicellular ancestors is one of the most important transitions since the origin of life. Multicellularity is associated with enhanced nutrient uptake, better defense against predation, cell specialization and division of labor. While many single-celled organisms exhibit both solitary and colonial forms, the organizing principles governing the transition and the benefits endowed by the colonial states are less clear.
View Article and Find Full Text PDFNanophotonics
August 2025
Wangzhijiang Innovation Center for Laser, Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
The high extinction ratio mode (de)multiplexer is a pivotal component in high capacity mode-division multiplexing data communication and nascent on-chip intermodal acousto-optic modulators. Up to now, high performance on-chip mode (de)multiplexers are still lacking for integrated AOMs on the lithium niobate-on-insulator platform. In this paper, we propose and demonstrate an innovative scheme to achieve high extinction ratio signal routing for acousto-optic modulation, by leveraging a two-mode (de)multiplexer in conjunction with a high- racetrack microring resonator.
View Article and Find Full Text PDF