Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diagnostic delay leads to poor outcomes in infections, and it occurs more often when the causative agent is unusual. Delays are attributable to failing to consider such diagnoses in a timely fashion. Using routinely collected electronic health record (EHR) data, we built a preliminary multivariable diagnostic model for early identification of unusual fungal infections and tuberculosis in hospitalized patients. We conducted a two-gate case-control study. Cases encompassed adult patients admitted to 19 Mayo Clinic enterprise hospitals between January 2010 and March 2023 diagnosed with blastomycosis, cryptococcosis, histoplasmosis, mucormycosis, pneumocystosis, or tuberculosis. Control groups were drawn from all admitted patients (random controls) and those with community-acquired infections (ID-controls). Development and validation datasets were created using randomization for dividing cases and controls (7:3), with a secondary validation using ID-controls. A logistic regression model was constructed using baseline and laboratory variables, with the unusual infections of interest outcome. The derivation dataset comprised 1043 cases and 7000 random controls, while the 451 cases were compared to 3000 random controls and 1990 ID-controls for validation. Within the derivation dataset, the model achieved an area under the curve (AUC) of 0.88 (95% confidence interval [CI]: 0.87-0.89) with a good calibration accuracy (Hosmer-Lemeshow P = 0.623). Comparable performance was observed in the primary (AUC = 0.88; 95% CI: 0.86-0.9) and secondary validation datasets (AUC = 0.84; 95% CI: 0.82-0.86). In this multicenter study, an EHR-based preliminary diagnostic model accurately identified five unusual fungal infections and tuberculosis in hospitalized patients. With further validation, this model could help decrease time to diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379024PMC
http://dx.doi.org/10.17305/bb.2024.10447DOI Listing

Publication Analysis

Top Keywords

diagnostic model
12
hospitalized patients
12
random controls
12
development validation
8
preliminary multivariable
8
multivariable diagnostic
8
unusual infections
8
unusual fungal
8
fungal infections
8
infections tuberculosis
8

Similar Publications

Systematic analyses uncover plasma proteins linked to incident cardiovascular diseases.

Protein Cell

August 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.

Cardiovascular disease (CVD) research is hindered by limited comprehensive analyses of plasma proteome across disease subtypes. Here, we systematically investigated the associations between plasma proteins and cardiovascular outcomes in 53,026 UK Biobank participants over a 14-year follow-up. Association analyses identified 3,089 significant associations involving 892 unique protein analytes across 13 CVD outcomes.

View Article and Find Full Text PDF

Objective: Pain hypersensitivity and hypersensitivity to other sensory modalities (visual, auditory, olfactory, and tactile) are considered defining features in nociplastic pain states. A self-report measure of sensory sensitivity may help to characterize sensory profiles across pain populations. This study aimed to evaluate the psychometric properties of a newly developed Danish nine-item Sensory Sensitivity Profile (SSP) questionnaire in patients with fibromyalgia.

View Article and Find Full Text PDF

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

Introduction: Differentiating acute tubular necrosis (ATN) from rejection in pediatric kidney transplant (KT) recipients remains challenging and necessitates invasive biopsy. Doppler ultrasound-derived resistive index (RI) is a noninvasive modality to assess graft status, but its diagnostic utility in children is unclear. This study evaluates RI's ability to distinguish ATN and rejection in KT.

View Article and Find Full Text PDF

A robust deep learning-driven framework for detecting Parkinson's disease using EEG.

Comput Methods Biomech Biomed Engin

September 2025

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.

Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.

View Article and Find Full Text PDF