Chemical Control of Fluorescence Lifetime towards Multiplexing Imaging.

Angew Chem Int Ed Engl

Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence lifetime imaging has been a powerful tool for biomedical research. Recently, fluorescence lifetime-based multiplexing imaging has expanded imaging channels by using probes that harbor the same spectral channels and distinct excited state lifetime. While it is desirable to control the excited state lifetime of any given fluorescent probes, the rational control of fluorescence lifetimes remains a challenge. Herein, we chose boron dipyrromethene (BODIPY) as a model system and provided chemical strategies to regulate the fluorescence lifetime of its derivatives with varying spectral features. We find electronegativity of structural substituents at the 8' and 5' positions is important to control the lifetime for the green-emitting and red-emitting BODIPY scaffolds. Mechanistically, such influences are exerted via the photo-induced electron transfer and the intramolecular charge transfer processes for the 8' and 5' positions of BODIPY, respectively. Based on these principles, we have generated a group of BODIPY probes that enable imaging experiments to separate multiple targets using fluorescence lifetime as a signal. In addition to BODIPY, we envision modulation of electronegativity of chemical substituents could serve as a feasible strategy to achieve rational control of fluorescence lifetime for a variety of small molecule fluorophores.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202403029DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
20
control fluorescence
12
lifetime
8
multiplexing imaging
8
excited state
8
state lifetime
8
rational control
8
fluorescence
7
imaging
5
bodipy
5

Similar Publications

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.

View Article and Find Full Text PDF

Symmetry Breaking Assisted Fast Reverse Intersystem Crossing for Efficient TADF Materials.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Reverse intersystem crossing (RISC) process is critical for thermally activated delayed fluorescence (TADF) materials to realize spin-flip of triplet excitons in organic light-emitting diodes (OLEDs), but the RISC processes of most TADF materials are not fast enough, undermining electroluminescence (EL) efficiency stability and operational lifetime. Herein, a symmetry breaking strategy to accelerate RISC processes is proposed. By designing asymmetric electron-withdrawing backbone consisting of benzonitrile and xanthone/thioxanthone groups, two new asymmetric TADF molecules, 4tCzCN-pXT and 4tCzCN-pTXT, with multiple 3,6-di-tert-butylcarbazole donors are successfully developed.

View Article and Find Full Text PDF

Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.

View Article and Find Full Text PDF

Ionic Liquid Engineered Defect-Driven Green Emitting Zero-Dimensional CsPbBr Microdisks.

J Phys Chem Lett

September 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.

Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.

View Article and Find Full Text PDF