Observation of parity-time symmetry in diffusive systems.

Sci Adv

State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase modulation has scarcely been mentioned in diffusive physical systems because the diffusion process does not carry the momentum like waves. Recently, non-Hermitian physics provides a unique perspective for understanding diffusion and shows prospects in thermal phase regulation, exemplified by the discovery of anti-parity-time (APT) symmetry in diffusive systems. However, precise control of thermal phase remains elusive hitherto and can hardly be realized, due to the phase oscillations. Here we construct the PT-symmetric diffusive systems to achieve the complete suppression of thermal phase oscillation. The real coupling of diffusive fields is readily established through a strong convective background, and the decay-rate detuning is enabled by thermal metamaterial design. We observe the phase transition of PT symmetry breaking with the symmetry-determined amplitude and phase regulation of coupled temperature fields. Our work shows the existence of PT symmetry in dissipative energy exchanges and provides unique approaches for harnessing the mass transfer of particles, wave dynamics in strongly scattering systems, and thermal conduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639672PMC
http://dx.doi.org/10.1126/sciadv.adn1746DOI Listing

Publication Analysis

Top Keywords

diffusive systems
12
thermal phase
12
symmetry diffusive
8
phase regulation
8
phase
7
diffusive
5
systems
5
thermal
5
observation parity-time
4
symmetry
4

Similar Publications

Background: Low-grade endometrial stromal sarcoma (LG-ESS) is a rare malignant tumor of the female reproductive system with atypical clinical symptoms and slow progression.

Case: A 44-year-old female with a history of intermittent severe dysmenorrhea, previous laparoscopic myomectomy, and uterine artery embolization (UAE) presented with rapidly enlarging pelvic masses. Imaging revealed uterine masses suggestive of leiomyomas, although an adnexal origin could not be excluded.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) induces cancer cell death by utilizing photosensitizers to generate reactive oxygen species (ROS) upon light irradiation, which in turn trigger oxidative stress. However, the therapeutic efficacy of PDT is constrained by the short lifetimes and limited diffusion range of ROS, resulting in suboptimal outcomes and off-target effects. Specific organelle targeting, facilitated by rationally engineered photosensitizers and nanoplatforms with precise drug delivery capabilities that activate organelle-mediated cell death pathways, can maximize localized oxidative damage, enhance therapeutic efficacy, and minimize systemic toxicity.

View Article and Find Full Text PDF

Evaluating the technical feasibility of biology-guided dose painting in proton therapy.

Phys Imaging Radiat Oncol

July 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Biology-guided voxel-level inverse prescription mapping for dose painting (DP) using diffusion-weighted magnetic resonance imaging was evaluated for technical feasibility in proton therapy for 10 skull-base chordoma patients. Patient-specific DP prescriptions were generated from tumour cellularity and implemented in a clinical treatment planning system. Compared with uniform plans, DP achieved lower conformity (although >97 %), improved target dose metrics, reduced doses to most organs at risk, and increased tumour control probability without exceeding clinical constraints.

View Article and Find Full Text PDF

Moisturising Gloves as a Solution for Occupational Skin Health: Advances and Challenges.

Contact Dermatitis

September 2025

Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia.

Extended glove usage is crucial in various occupational settings to safeguard workers and maintain hygiene standards. However, prolonged wear creates an occlusive environment that disrupts normal skin evaporation, leading to temporary overhydration. This reversal of the diffusion gradient facilitates the penetration of residual soaps and alcohol from hand hygiene practices, which can deplete skin moisture and cause irritation.

View Article and Find Full Text PDF