Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-biochem-032620-104731DOI Listing

Publication Analysis

Top Keywords

natural products
12
postgenomic era
8
discovery
5
triumphs challenges
4
natural
4
challenges natural
4
natural product
4
product discovery
4
discovery postgenomic
4
era natural
4

Similar Publications

Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has devastated economies and strained health care systems worldwide. Vaccination is crucial for outbreak control, but disparities persist between and within countries. In Taiwan, certain indigenous regions show lower vaccination rates, prompting comprehensive inquiries.

View Article and Find Full Text PDF

Protein Deamidation Reduced Digestive Resistance and Amyloid Antigenicity of Soy Proteins via Depolymerization.

J Agric Food Chem

September 2025

Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.

Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.

View Article and Find Full Text PDF

Recent Advances in the Isolation, Bioactivity, Biosynthesis, and Total Synthesis of Hamigerans.

J Nat Prod

September 2025

Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, P. R. China.

Hamigerans, a class of diterpenoid natural products isolated from marine sponge , are characterized by distinctive 6-6-5 or 6-7-5 tricyclic skeletons. These compounds have been a focal point for synthetic chemists in recent years due to their remarkable biological activities. In this Review, we summarize the progress made in the isolation, biosynthesis, bioactivity, and total synthesis of hamigerans, with particular emphasis on synthetic studies published since 2013.

View Article and Find Full Text PDF

The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.

View Article and Find Full Text PDF