98%
921
2 minutes
20
Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the formation of callus tissue-a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating de novo shoots and roots, thereby developing into regenerated plants-a testament to the heightened developmental plasticity inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026228 | PMC |
http://dx.doi.org/10.1007/s00299-024-03216-9 | DOI Listing |
J Med Chem
September 2025
Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
Diabetic wound healing remains a persistent clinical challenge, necessitating the development of effective therapeutic agents and a deeper understanding of regulatory mechanisms. The cyclic heptapeptide FZ1, characterized by favorable biocompatibility, exhibited significantly greater efficacy than rh-bFGF and Cy in promoting cell proliferation and migration. In diabetic wound models, FZ1 markedly accelerated tissue regeneration and stimulated angiogenesis, as indicated by the upregulation of CD31 and α-SMA.
View Article and Find Full Text PDFAntipyretic analgesics are typical pharmaceutical and personal care products (PPCPs) that are widely used in our daily life because they relieve fever and pain, and have anti-inflammatory and anti-rheumatic properties. These drugs inhibit the synthesis and release of prostaglandins (PGs) in the neurons of the anterior hypothalamus and exert therapeutic effects as a consequence. However, these drugs are relatively commonly misused and abused, often owing to a lack of proper medication guidance.
View Article and Find Full Text PDFRisk Anal
September 2025
Integrated Sustainability Centre, Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan.
Forest fires are integral to forest ecosystems as they influence nutrient cycling, plant regeneration, tree density, and biodiversity. However, human-induced climate change and activities have made forest fires more frequent, more intense, and more widespread, exacerbating their ecological and socioeconomic impact. Forest fires shape Tamil Nadu's diverse forest ecosystems, yet rising anthropogenic pressure and a warmer, drier climate have increased both their frequency and severity.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs developed using phlorizin, a natural glucoside, as the lead compound. Chemical glycosylation requires multi-step reactions involving protection and deprotection steps, posing challenges in terms of regioselectivity and environmental burden due to the use of hazardous reagents and harsh conditions. In contrast, enzymatic glycosylation using UDP-glucosyltransferases (UGTs) enables regio- and stereoselective glycosylation under mild conditions without protection and deprotection steps.
View Article and Find Full Text PDFCurr Opin Plant Biol
September 2025
State Key Laboratory of Gene Function and Modulation Research, Beijing Advanced Center of RNA Biology (BEACON), School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. Electronic address:
Plants exhibit remarkable regenerative capacities, enabling tissue repair, de novo organogenesis, and somatic embryogenesis in response to mechanical injury or phytohormone induction. At the cellular level, this process is driven by the establishment of pluripotency and cell fate specification, regulated through dynamic epigenomic remodeling. Emerging studies have begun to unravel the intricate regulatory circuits governing regeneration in a cell-type- and lineage-specific manner.
View Article and Find Full Text PDF