Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many enzymes display non-Arrhenius behavior with curved Arrhenius plots in the absence of denaturation. There has been significant debate about the origin of this behavior and recently the role of the activation heat capacity (Δ) has been widely discussed. If enzyme-catalyzed reactions occur with appreciable negative values of Δ (arising from narrowing of the conformational space along the reaction coordinate), then curved Arrhenius plots are a consequence. To investigate these phenomena in detail, we have collected high precision temperature-rate data over a wide temperature interval for a model glycosidase enzyme MalL, and a series of mutants that change the temperature-dependence of the enzyme-catalyzed rate. We use these data to test a range of models including macromolecular rate theory (MMRT) and an equilibrium model. In addition, we have performed extensive molecular dynamics (MD) simulations to characterize the conformational landscape traversed by MalL in the enzyme-substrate complex and an enzyme-transition state complex. We have crystallized the enzyme in a transition state-like conformation in the absence of a ligand and determined an X-ray crystal structure at very high resolution (1.10 Å). We show (using simulation) that this enzyme-transition state conformation has a more restricted conformational landscape than the wildtype enzyme. We coin the term "transition state-like conformation (TLC)" to apply to this state of the enzyme. Together, these results imply a cooperative conformational transition between an enzyme-substrate conformation (ES) and a transition-state-like conformation (TLC) that precedes the chemical step. We present a two-state model as an extension of MMRT (MMRT-2S) that describes the data along with a convenient approximation with linear temperature dependence of the activation heat capacity (MMRT-1L) that can be used where fewer data points are available. Our model rationalizes disparate behavior seen for MalL and previous results for a thermophilic alcohol dehydrogenase and is consistent with a raft of data for other enzymes. Our model can be used to characterize the conformational changes required for enzyme catalysis and provides insights into the role of cooperative conformational changes in transition state stabilization that are accompanied by changes in heat capacity for the system along the reaction coordinate. TLCs are likely to be of wide importance in understanding the temperature dependence of enzyme activity and other aspects of enzyme catalysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11020164PMC
http://dx.doi.org/10.1021/acscatal.3c05584DOI Listing

Publication Analysis

Top Keywords

heat capacity
16
cooperative conformational
12
activation heat
12
temperature dependence
12
enzyme catalysis
12
enzyme
8
dependence enzyme
8
curved arrhenius
8
arrhenius plots
8
reaction coordinate
8

Similar Publications

Insight into the structural deterioration of biosynthesized holoferritin upon thermal treatment.

Int J Biol Macromol

September 2025

School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei 230601, Anhui, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 23

Holoferritin is considered a promising iron supplement, yet its preparation is challenging due to low extraction efficiencies from natural sources and the potential for structural damage during in vitro mineralization. This study reported the in vivo biosynthesis of a highly stable holoferritin (bs-holoFt) in Escherichia coli a high iron-loading capacity (1213 Fe atoms/protein) and systematically characterized the impact of heat treatments (70-100 °C) on the protein's multi-level structure and dual functions. Results showed a clear, temperature-dependent degradation pathway, initiated by the loss of α-helical content (decreased from 77.

View Article and Find Full Text PDF

Discarded sericultural mulberry branch based triple layer composite phase change material with lignin enhanced thermal management capability.

Int J Biol Macromol

September 2025

Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:

With the exhaustion of fossil fuels, prior phase change materials are characterized by such drawbacks as poor thermal conductivity, weak shape stability, and high costs. Therefore, the preparation of phase change materials with brilliant thermal-insulating properties, high thermal conductivity, and leakage-free properties has emerged as a crucial research focus. Herein, a sericultural mulberry branch-derived (SMB) composite phase change material was prepared by deep eutectic solvent pretreated SMB and vacuum-assisted impregnated paraffin wax with cupric oxide (CuO).

View Article and Find Full Text PDF

Drought stress has profound impacts on ecosystems and societies, particularly in the context of climate change. Traditional drought indicators, which often rely on integrated water budget anomalies at various time scales, provide valuable insights but often fail to deliver clear, real-time assessments of vegetation stress. This study introduces the Cooling Efficiency Factor Index (CEFI), a novel metric purely derived from geostationary satellite observations, to detect vegetation drought stress by analyzing daytime surface warming anomalies.

View Article and Find Full Text PDF

Antibiotic growth promoters (AGPs) are increasingly subject to global regulatory restrictions and consumer pressure, driving the poultry industry toward antibiotic-free production systems. This shift has accelerated the search for effective alternatives, including innovative microbial additives, organic acids, phytogenics, and other bioactive compounds capable of supporting digestive function and enhancing immune competence in poultry. The present study reported the isolation and characterization of a novel Bacillus velezensis strain, BV-OLS1101, possessing robust probiotic attributes and a distinctive capacity to produce a serine protease subtilisin.

View Article and Find Full Text PDF

The huge volume waste of the produced water (PW) associated with petroleum extraction poses significant hazards to the surrounded environment due to its complex composition and the presence of various hazardous pollutants, including organic, inorganic, biological contaminants, and natural occurring radioactive materials (NORM). This study was conducted to investigate the factors affecting the removal of the long-lived radium isotopes, i.e.

View Article and Find Full Text PDF