Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Research on microplastics (MPs) is gaining more attention in the soil environment, but their impact on soil microbiota and related nitrogen processes remains poorly understood. Nitrous oxide (NO) is one of the important greenhouse gases of the nitrogen cycle in agricultural soil, which mainly originates from microbial-mediated nitrogen (N) transformation processes. Microplastics can influence soil nitrogen transformation, as well as nitrogen-related functional enzymes and genes, and its enrichment may profoundly affect the NO emissions in soil. However, because of the complexity of the properties of MPs, variations in experimental conditions, and spatial-temporal scales, the results on the effects of MPs on soil NO emissions, nitrogen content, enzymes activities, and nitrogen functional genes remain inconsistent. Additionally, there is a lack of research conducted at broader experimental scales (e.g., pot scale), from diverse perspectives (e.g., denitrification or DNRA), and using advanced techniques (e.g., stable isotope approaches) to elucidate the underlying mechanisms. Therefore, to comprehend the environmental risk of MPs on soil from multiple perspectives, this review summarized the impact of MPs on soil N cycling from previous published research to provide a knowledge basis and gain holistic insights into the potential impact of soil microplastic enrichment on NO emission patterns in agricultural soils under climate change conditions.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202305080DOI Listing

Publication Analysis

Top Keywords

mps soil
12
soil
10
soil emissions
8
emissions nitrogen
8
impact soil
8
nitrogen transformation
8
nitrogen
7
mps
5
[advances effects
4
effects microplastics
4

Similar Publications

Microplastic Diversity as a Potential Driver of Soil Denitrification Shifts.

Environ Sci Technol

September 2025

State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Microplastics (MPs) are raising significant global concerns due to their environmental impacts. While most studies have focused on the effects of individual MP types, MPs in natural environments typically coexist as multiple types, and their combined effects remain poorly understood. In this study, we conducted a microcosm experiment with four levels of MP diversity (0, 1, 3, and 5 types) to investigate the effects of MP diversity on soil ecosystem functions using metagenomic sequencing.

View Article and Find Full Text PDF

Fe-modified biochar-driven ROS generation in the rhizosphere and their role in microplastic transformation.

J Hazard Mater

September 2025

State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation

Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).

View Article and Find Full Text PDF

Microplastics (MPs) contamination in urban groundwater is an emerging environmental and public health threat, particularly in regions relying on open wells for drinking water. This study examines the occurrence, characteristics, ecological risks and sources of MP contamination across 120 open wells in Kozhikode Municipal Corporation, Kerala, India. MPs were detected in 73.

View Article and Find Full Text PDF

Microplastics monitoring in different environments: separation, physicochemical characterization, and quantification.

Environ Monit Assess

September 2025

Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China.

Multiple environments (such as water and soil) on Earth are contaminated with randomly distributed microplastics (MPs). Wind and water can redistribute MPs from their point sources to diverse locations (such as farmland, lakes, and rivers), thus necessitating simultaneous monitoring. This study systematically investigated the contamination of MPs in the wastewater treatment plant (WWTP), its surrounding water bodies, and the soils around plastic factories.

View Article and Find Full Text PDF

Microplastics (MPs) are widespread contaminants in agroecosystems, with potential implications for soil microbial communities, plant growth, and crop-weed interactions. This study investigates how MPs of different particle sizes influence crop-weed competition by altering soil microbial communities. Through a controlled greenhouse experiment, we examined the effects of 50 μm and 500 μm polyethylene (PE) MPs on competition between Eruca sativa (crop) and Amaranthus retroflexus (weed).

View Article and Find Full Text PDF