98%
921
2 minutes
20
Challenges such as shuttle effect have hindered the commercialization of lithium-sulfur batteries (LSBs), despite their potential as high-energy-density storage devices. To address these issues, we explore the integration of solar energy into LSBs, creating a photo-assisted lithium-sulfur battery (PA-LSB). The PA-LSB provides a novel and sustainable solution by coupling the photocatalytic effect to accelerate sulfur redox reactions. Herein, a perovskite quantum dot-loaded MOF material serves as a cathode for the PA-LSB, creating built-in electric fields at the micro-interface to extend the lifetime of photo-generated charge carriers. The band structure of the composite material aligns well with the electrochemical reaction potential of lithium-sulfur, enabling precise regulation of polysulfides in the cathode of the PA-LSB system. This is attributed to the selective catalysis of the liquid-solid reaction stage in the lithium-sulfur electrochemical process by photocatalysis. These contribute to the outstanding performance of PA-LSBs, particularly demonstrating a remarkably high reversible capacity of 679 mAh g at 5 C, maintaining stable cycling for 1500 cycles with the capacity decay rate of 0.022 % per cycle. Additionally, the photo-charging capability of the PA-LSB holds the potential to compensate for non-electric energy losses during the energy storage process, contributing to the development of lossless energy storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202402624 | DOI Listing |
Environ Sci Technol
September 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Sulfidized zero-valent iron (S-ZVI) holds promise in the remediation of chlorinated hydrocarbons. However, S-ZVI is susceptible to corrosion in aquifers with elevated dissolved oxygen (DO) levels. This study demonstrates, for the first time, that a trade-off between the passivation and oxidative corrosion of aged S-ZVI can be achieved in the presence of silicate to promote its dechlorination performance on trichloroethylene.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.
View Article and Find Full Text PDFJ Inorg Biochem
September 2025
National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA. Electronic address:
Flavin-based electron bifurcation (FBEB) is employed by microorganisms for controlling pools of redox equivalents by reversibly splitting electron pairs into high- and low-energy levels from an initial midpoint potential. Our ability to harness this phenomenon is crucial for biocatalytic design which is limited by our understanding of energy coupling in the bifurcation system. In Pyrococcus furiosus, FBEB is carried out by the NADH-dependent ferredoxin:NADP-oxidoreductase (NfnSL), coupling the uphill reduction of ferredoxin in NfnL to the downhill reduction of NAD in NfnS from oxidation of NADPH.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.
The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Physics and Electronic Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China. Electronic address:
Antimony trisulfide (SbS) has emerged as a promising inorganic semiconductor for optoelectronics due to its distinctive anisotropic crystal structure and suitable bandgap (∼1.7 eV). While hydrothermal synthesis remains challenging for achieving high crystallinity and controlled morphology, we developed an innovative dual‑sulfur precursor strategy utilizing sodium thiosulfate (STS) and thioacetamide (TAA) at a 7:2 M ratio with SbCl.
View Article and Find Full Text PDF