98%
921
2 minutes
20
Research on megaplasmids that contribute to the spread of antimicrobial resistance (AMR) in strains has grown in recent years due to the now widely used technologies allowing long-read sequencing. Here, we systematically analyzed distinct and consistent genetic characteristics of megaplasmids found in . Our data provide information on their phylogenetic distribution and hypotheses tracing the potential evolutionary paths of megaplasmids. Most of the megaplasmids we found belong to the IncP-2-type, with conserved and syntenic genetic backbones carrying modules of genes associated with chemotaxis apparatus, tellurite resistance and plasmid replication, segregation, and transmission. Extensively variable regions harbor abundant AMR genes, especially those encoding β-lactamases such as VIM-2, IMP-45, and KPC variants, which are high-risk elements in nosocomial infection. IncP-2 megaplasmids act as effective vehicles transmitting AMR genes to diverse regions. One evolutionary model of the origin of megaplasmids claims that chromids can develop from megaplasmids. These chromids have been characterized as an intermediate between a megaplasmid and a chromosome, also containing core genes that can be found on the chromosome but not on the megaplasmid. Using prediction, we identified the "PABCH45 unnamed replicon" as a putative chromid in , which shows a much higher similarity and closer phylogenetic relationship to chromosomes than to megaplasmids while also encoding plasmid-like partition genes. We propose that such a chromid could facilitate genome expansion, allowing for more rapid adaptations to novel ecological niches or selective conditions, in comparison to megaplasmids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015739 | PMC |
http://dx.doi.org/10.1016/j.csbj.2024.04.002 | DOI Listing |
NPJ Antimicrob Resist
September 2025
Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.
Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).
View Article and Find Full Text PDFAppl Environ Microbiol
August 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
Isobutylene (IB) is produced on a large scale by the petrochemical industry and is metabolized by the aerobic alkene-metabolizing bacterium sp. ELW1. The initial metabolite of IB catabolism by this bacterium is proposed to be 2-methyl-1,2-epoxypropane (isobutylene oxide [IBO]).
View Article and Find Full Text PDFInt J Antimicrob Agents
August 2025
Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine, Shandong Laboratory,
Pseudomonas fulva is an uncommon pseudomonal opportunistic pathogen causing rare clinical infections in humans. The emergence of the novel drug resistance mechanism tmexCD-toprJ and the variants poses new challenges to anti-infective treatment. Here, we describe the complete sequences of two clinical P.
View Article and Find Full Text PDFCurr Opin Microbiol
August 2025
Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France. Electronic address:
Bacterial genomes often contain extrachromosomal replicons (ERs), ranging from small, mobile plasmids to large, stably inherited elements, such as megaplasmids, secondary chromosomes, or chromids. Multipartite genomes, which include large ERs, are present in approximately 10% of sequenced bacterial species and are thought to have evolved as adaptive solutions to diverse ecological niches. Understanding how these replicons become essential genome components is critical for characterizing bacterial adaptability and genome plasticity.
View Article and Find Full Text PDFJ Antimicrob Chemother
August 2025
Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, B
Plasmid fusion, the recombination of distinct plasmids into a single plasmid, constitutes a critical mechanism shaping bacterial evolution. This process facilitates genetic resource consolidation, enabling bacterial populations to rapidly adapt to selective pressures such as antibiotic exposure. The growing recognition of plasmid fusion as a widespread genomic recombination event necessitates a comprehensive analysis of its prerequisites, molecular mechanisms, and functional consequences.
View Article and Find Full Text PDF