98%
921
2 minutes
20
Microvascular injury immediately following reperfusion therapy in acute myocardial infarction (MI) has emerged as a driving force behind major adverse cardiovascular events in the postinfarction period. Although postmortem investigations and animal models have aided in developing early understanding of microvascular injury following reperfusion, imaging, particularly serial noninvasive imaging, has played a central role in cultivating critical knowledge of progressive damage to the myocardium from the onset of microvascular injury to months and years after in acute MI patients. This review summarizes the pathophysiological features of microvascular injury and downstream consequences, and the contributions noninvasive imaging has imparted in the development of this understanding. It also highlights the interventional trials that aim to mitigate the adverse consequences of microvascular injury based on imaging, identifies potential future directions of investigations to enable improved detection of disease, and demonstrates how imaging stands to play a major role in the development of novel therapies for improved management of acute MI patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcmg.2024.02.003 | DOI Listing |
Front Cardiovasc Med
August 2025
Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.
View Article and Find Full Text PDFCureus
August 2025
Department of Internal Medicine, Babcock University Teaching Hospital, Ilishan-Remo, NGA.
Myocardial infarction with non-obstructive coronary arteries (MINOCA) is a group of heterogeneous diseases with different pathological mechanisms. It is often under-recognized because of its diverse differential diagnoses like myocarditis, takotsubo cardiomyopathy, spontaneous coronary artery dissection (SCAD), coronary microvascular dysfunction, vasospasm, coronary erosion, and embolism. Evaluation with multimodality imaging including intravascular coronary imaging and cardiac magnetic resonance is often necessary to determine the underlying etiology and management.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
September 2025
Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by synovial hyperplasia and pannus formation, which serves as its primary pathological feature and may ultimately result in joint deformities. Lysyl oxidase (LOX) is involved in the formation and remodeling of the extracellular matrix, but its role in RA is not yet clear. This study aims to investigate the mechanism of lysyl oxidase (LOX) in synovial hyperplasia and pannus formation associated with rheumatoid arthritis (RA).
View Article and Find Full Text PDFTranspl Immunol
September 2025
Intensive Care, Royal Free Hospital, Hampstead, London, United Kingdom.
Background: Inflammatory injury in organ donors, particularly after brain death and during ischemia-reperfusion, contributes to graft dysfunction, rejection, and reduced survival. Statins, beyond their lipid-lowering role, exert pleiotropic anti-inflammatory and immunomodulatory effects, including IL-6 suppression, NF-κB inhibition, immune cell modulation, and potential alteration of exosome secretion.
Methods: Building upon this background, this narrative review synthesises preclinical and clinical evidence on pre-donation statin therapy in solid organ transplantation.
Oper Neurosurg
September 2025
Department of Neurosurgery and the Training Base of Neuroendoscopic Physicians under the Chinese Medical Doctor Association, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
Background And Objectives: Microvascular decompression (MVD) for hemifacial spasm (HFS) is commonly conducted under a microscope. We report a large series of fully endoscopic MVDs for HFS and describe our initial experience with 3-dimensional (3D) endoscopy.
Methods: Clinical data of 204 patients with HFS who underwent fully endoscopic MVD using 2-dimensional (2D) and 3D endoscopy (191 and 13 patients, respectively) from July 2017 to October 2024 were retrospectively analyzed.