98%
921
2 minutes
20
Two-dimensional (2D) materials with atomic-scale thickness are promising candidates to develop next-generation electronic and optoelectronic devices with multiple functions due to their widely tunable physical properties by various stimuli. The surface acoustic wave (SAW) produced at the surface of the piezoelectrical substrate can generate electrical and strain fields simultaneously with micro/nanometer resolution during propagation. It provides a stable and wireless platform to manipulate the rich and fascinating properties of 2D materials. However, the interaction mechanisms between the SAW and 2D materials remain unclear, preventing further development and potential applications of SAW-integrated 2D devices. This work studied the acoustoelectric (AE) charge transport mechanism in 2D materials thoroughly by characterizing the performances of the n-type MoS and p-type MoTe field effect transistors (FETs) and the MoS/MoTe p-n junction driven by the SAW. As compared to the case driven by the static electrical field alone, the SAW drove the electron and hole transport along the same direction as its propagation, and the generated AE current always had the opposite direction to the AE voltage. In the device level, the 2D FETs showed a significantly reduced subthreshold swing up to around 67% when the SAW was used to drive the channel carriers, indicating that the SAW enhanced the on/off switching speed. Moreover, the MoTe/MoS p-n junction showed a tunable photoresponsivity by the power and propagation direction of the SAW. These findings provide a solid foundation to promote future research and potential applications of SAW-driven multifunctional devices based on 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c00663 | DOI Listing |
J Phys Chem Lett
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.
Inverted quantum dot light-emitting diodes (QLEDs) show great promise for next-generation displays due to their compatibility with integrated circuit architectures. However, their development has been hindered by inefficient exciton utilization and charge transport imbalance. Here, we present a strategy for regulating charge-exciton dynamics through the rational design of a multifunctional hole transport layer (HTL), incorporating polyethylenimine ethoxylated (PEIE) as a protective interlayer in fully-solution-processed inverted red QLEDs.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.
Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.
Density functional theory (DFT) calculations are employed to investigate the formation energies, charge redistribution, and binding energies of iron-oxygen divacancies in magnetite (FeO) and hematite (FeO). For magnetite, we focus on the low-temperature phase to explore variations with local environments. Building on previous DFT calculations of the variations in formation energies for oxygen vacancies with local charge and spin order in magnetite, we extend this analysis to include octahedral iron vacancies before analyzing the iron-oxygen divacancies.
View Article and Find Full Text PDFRSC Adv
September 2025
Laboratory of Spectroscopic Characterization and Optical Materials, Faculty of Sciences, University of Sfax B.P. 1171 3000 Sfax Tunisia
Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.
View Article and Find Full Text PDF