98%
921
2 minutes
20
Dynamics of microbiomes through time are fundamental regarding survival and resilience of their hosts when facing environmental alterations. As for marine species with commercial applications, such as marine sponges, assessing the temporal change of prokaryotic communities allows us to better consider the adaptation of sponges to aquaculture designs. The present study aims to investigate the factors shaping the microbiome of the sponge Dactylospongia metachromia, in a context of aquaculture development in French Polynesia, Rangiroa, Tuamotu archipelago. A temporal approach targeting explants collected during farming trials revealed a relative high stability of the prokaryotic diversity, meanwhile a complementary biogeographical study confirmed a spatial specificity amongst samples at different longitudinal scales. Results from this additional spatial analysis confirmed that differences in prokaryotic communities might first be explained by environmental changes (mainly temperature and salinity), while no significant effect of the host phylogeny was observed. The core community of D. metachromia is thus characterized by a high spatiotemporal constancy, which is a good prospect for the sustainable exploitation of this species towards drug development. Indeed, a microbiome stability across locations and throughout the farming process, as evidenced by our results, should go against a negative influence of sponge translocation during in situ aquaculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008079 | PMC |
http://dx.doi.org/10.1007/s10482-024-01962-0 | DOI Listing |
Mol Syst Biol
September 2025
TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.
View Article and Find Full Text PDFEnviron Microbiol
September 2025
Department Biodiversity, University of Duisburg-Essen, Essen, Germany.
Microbial communities play a crucial role in the functioning of freshwater ecosystems but are continuously threatened by climate change and anthropogenic activities. Elevated temperatures and salinisation are particularly challenging for freshwater habitats, but little is known about how microbial communities respond to the simultaneous exposure to these stressors. Here, we use mesocosm experiments and amplicon sequencing data to investigate the responses of pelagic and benthic microbial communities to temperature and salinity increases, both individually and in combination.
View Article and Find Full Text PDFFEMS Microbiol Ecol
September 2025
Institute of Microbiology, Leibniz University Hannover, 30419 Hannover, Germany.
Unmanaged plastic waste in Sub-Saharan Africa pollutes large areas and degrades into microplastics. Surfaces of microplastic are colonized by bacteria and fungi, resulting in the plastisphere. Plastispheres from high population hotspots on the African continent enrich pathogenic fungi, posing a potential threat to human health.
View Article and Find Full Text PDFWater Res
August 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
Microalgal-bacterial biofilm could realize synergistic pollutants removal, CO sequestration, and resource transformation from wastewater. Pre-designed biofilm with clear microbial composition would benefit resource transformation, yet little is known about its nutrients removal performance under axenic conditions, not to mention the comparison with non-axenic conditions over extended operation. To fill in this knowledge gap, this study first investigated the growth characteristics and nutrients removal performances of a pre-designed microalgae dominant biofilm.
View Article and Find Full Text PDF