Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The study established a nomogram based on quantitative parameters of spectral computed tomography (CT) and clinical characteristics, aiming to evaluate its predictive value for preoperative lymphovascular invasion (LVI) in gastric cancer (GC).

Methods: From December 2019 to December 2021, 171 patients with pathologically confirmed GC were retrospectively collected with corresponding clinical data and spectral CT quantitative data. Patients were divided into LVI-positive and LVI-negative groups based on their pathological results. The univariate and multivariate logistic regression analyses were used to identify the risk factors and construct a nomogram. The calibration curve and receiver operating characteristic (ROC) curve were adopted to evaluate the predictive accuracy of nomogram.

Results: Four clinical characteristics or spectral CT quantitative parameters, including Borrmann classification ( = 0.039), CA724 ( = 0.007), tumor thickness ( = 0.031), and iodine concentration in the venous phase (VIC) ( = 0.004) were identified as independent factors for LVI in GC patients. The nomogram was established based on the four factors, which had a potent predictive accuracy in the training, internal validation and external validation cohorts, with the area under the ROC curve (AUC) of 0.864 (95% CI, 0.798-0.930), 0.964 (95% CI, 0.903-1.000) and 0.877 (95% CI, 0.759-0.996), respectively.

Conclusion: This study constructed a comprehensive nomogram consisting spectral CT quantitative parameters and clinical characteristics of GC, which exhibited a robust efficiency in predicting LVI in GC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004867PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e29214DOI Listing

Publication Analysis

Top Keywords

spectral quantitative
16
quantitative parameters
16
clinical characteristics
16
parameters clinical
8
lymphovascular invasion
8
gastric cancer
8
evaluate predictive
8
roc curve
8
predictive accuracy
8
lvi patients
8

Similar Publications

Noninvasive Monitoring of Blood Glucose With In Vivo Raman Spectroscopy.

J Biophotonics

September 2025

Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China.

Non-invasive glucose monitoring using Raman spectroscopy with 830 nm excitation presents a promising alternative to traditional fingerstick methods for diabetes management research. An integrated in vivo Raman system enables transcutaneous glucose detection and has demonstrated robust performance in oral glucose tolerance tests (OGTT), validating its reliability. Inter-subject correlation between spectral features and glucose concentration was addressed by the intensity of the fingerprint peak (I), peak intensity ratio (I/I), and the spectral area ratio (S/S), whose correlation coefficient (R) was 0.

View Article and Find Full Text PDF

Infrared (IR) spectroscopic imaging combines the molecular specificity of vibrational spectroscopy with imaging capabilities of microscopy, potentially allowing for simultaneous quantitative observations of drugs and cellular response. However, accurately quantifying drug concentration within changing cells is complicated by the overlap between exogenous molecules' and native cellular spectra. Here, we address this challenge by developing a derivative of the widely used chemotherapeutic doxorubicin as a spectral bioprobe (DOX-IR) using a strongly absorbing metal-carbonyl moiety [(Cp)Fe(CO)].

View Article and Find Full Text PDF

Exploring the Arousal Intensity in Patients with Obstructive Sleep Apnea: Based on Odds Ratio Product.

Nat Sci Sleep

September 2025

Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China.

Aim: Obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse during sleep, resulting in frequent cortical arousals. However, currently used frequency-based arousal metrics do not sufficiently capture the heterogeneity and clinical significance of arousal responses. The odds ratio product (ORP) is a novel electroencephalographic marker that provides a continuous assessment of sleep depth and has the potential to serve as an objective measure of arousal intensity.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Multi-scale convolutional attention GRU network combined with improved CARS strategy to determine key elements in ores by XRF.

Anal Chim Acta

November 2025

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China; Laboratory for Microwave Spatial Inte

Background: X-ray fluorescence (XRF) technology is a promising method for estimating the metal element content in ores, which helps in understanding ore composition and optimizing mining and processing strategies. However, due to the presence of a large number of redundant features in XRF spectra, traditional quantitative analysis models struggle to effectively capture the nonlinear relationship between element concentration and spectral information of XRF, making it more difficult to accurately predict metal element concentrations. Thus, analyzing ore element concentrations by XRF remains a significant challenge.

View Article and Find Full Text PDF