Insight into the Growth Mechanism of Low-Temperature Synthesis of High-Purity Lithium Slag-Based Zeolite A.

Materials (Basel)

School of Chemical & Environmental Engineering, China University of Mining & Technology, Ding No. 11, Xueyuan Road, Haidian District, Beijing 100083, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The utilization of lithium slag (LS), a solid waste generated during the production of lithium carbonate, poses challenges due to its high sulfur content. This study presents a novel approach to enhancing the value of LS by employing alkali fusion and hydrothermal synthesis techniques to produce zeolite A at low temperatures. The synthesis of high-purity and crystalline lithium-slag-based zeolite A (LSZ) at 60 °C is reported for the first time in this research. The phase, morphology, particle size, and structure of LSZ were characterized by XRD, SEM, TEM, N adsorption, and UV Raman spectroscopy, respectively. High-purity and crystalline zeolite A was successfully obtained under hydrothermal conditions of 60 °C, an NaOH concentration of 2.0 mol/L, and a hydrothermal time of 8 h. The samples synthesized at 60 °C exhibited better controllability and almost no byproduct of sodalite occurred compared to zeolite A synthesized at room temperature or conventional temperature (approximately 90 °C). Additionally, the growth mechanism of LSZ was elucidated, challenging the traditional understanding of utilization of lithium and enabling the synthesis of various zeolites at lower temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856251PMC
http://dx.doi.org/10.3390/ma17030568DOI Listing

Publication Analysis

Top Keywords

growth mechanism
8
synthesis high-purity
8
utilization lithium
8
high-purity crystalline
8
zeolite
5
insight growth
4
mechanism low-temperature
4
synthesis
4
low-temperature synthesis
4
lithium
4

Similar Publications

Warm temperature-induced autophagy mediates selective degradation of TIMING OF CAB EXPRESSION 1 thus promoting plant thermomorphogenesis.

Plant Cell

September 2025

Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.

Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF

In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.

Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF