98%
921
2 minutes
20
The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem which could enable many practical applications of protein biosensors. In this work, we analyzed two engineer ed biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996623 | PMC |
http://dx.doi.org/10.1101/2024.03.25.586677 | DOI Listing |
Chem Commun (Camb)
September 2025
School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China.
In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.
Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.
View Article and Find Full Text PDFFEBS Lett
September 2025
Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus.
Genetic variants of various cytochrome P450 (CYP) enzymes significantly impact pharmacokinetics. The highly polymorphic hepatic CYP2C9 metabolizes ~ 15% of clinically used drugs. This study aimed to characterize the ligand-binding properties of the understudied CYP2C9.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
Motivated by copper's essential role in biology and its wide range of applications in catalytic and synthetic chemistry, this work aims to understand the effect of heteroatom substitution on the overall stability and reactivity of biomimetic Cu(II)-alkylperoxo complexes. In particular, we designed a series of tetracoordinated ligand frameworks based on iso-BPMEN = (,-bis(2-pyridylmethyl)-','-dimethylethane-1,2-diamine) with varying the primary coordination sphere using different donor atoms (N, O, or S) bound to Cu(II). The copper(II) complexes bearing iso-BPMEN and their modified heteroatom-substituted ligands were synthesized and structurally characterized.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDF