Modulating macrophage phenotype for accelerated wound healing with chlorogenic acid-loaded nanocomposite hydrogel.

J Control Release

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceut

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities. Due to the Schiff base and Phenylboronate ester bonds, the hydrogel exhibited excellent mechanical properties, strong adhesion, good biodegradability, high biocompatibility, stable rheological properties, and self-healing ability. Moreover, introducing Z-CA as an initiator and nanofiller led to the additional cross-linking of hydrogel through coordination bonds, which further improved the mechanical properties and antioxidant capabilities. Bleeding models of liver and tail amputations demonstrated rapid hemostatic properties of the hydrogel. Besides, the hydrogel regulated macrophage phenotypes via the NF-κB/JAK-STAT pathways, relieved oxidative stress, promoted cell migration and angiogenesis, and accelerated diabetic wound healing. The hydrogel also enabled real-time monitoring of the wound healing stages by colorimetric detection. This multifunctional hydrogel opens new avenues for the treatment and management of full-thickness diabetic wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.03.054DOI Listing

Publication Analysis

Top Keywords

wound healing
16
hydrogel
8
mechanical properties
8
wound
5
modulating macrophage
4
macrophage phenotype
4
phenotype accelerated
4
accelerated wound
4
healing
4
healing chlorogenic
4

Similar Publications

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF

Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have gained prominence for their efficacy in treating type 2 diabetes and obesity. Recent evidence suggests that their pleiotropic effects-beyond glycemic control and weight loss-include anti-inflammatory, immunomodulatory, and antioxidative effects, which may beneficially support various dermatologic conditions such as psoriasis, hidradenitis suppurativa, acanthosis nigricans, and Hailey-Hailey disease. However, GLP-1 RAs are also associated with emerging cutaneous adverse drug reactions, including bullous, exanthematous and vasculitic manifestations, and other rare side effects.

View Article and Find Full Text PDF

HMGB1: a multifaceted mediator of cell death pathways in cardiovascular diseases.

Apoptosis

September 2025

Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuang, China.

Cardiovascular diseases (CVDs) are a leading cause of death globally, responsible for 32% of all fatalities. They significantly reduce quality of life and life expectancy, while imposing a substantial economic burden on healthcare systems in different countries. High mobility group box 1 (HMGB1), a location-dependent multifunctional protein, plays a significant role in various cell death pathways associated with CVDs.

View Article and Find Full Text PDF

5-Aminolevulinic acid-mediated photodynamic therapy improves scar healing of laryngeal wounds in rats.

Lasers Med Sci

September 2025

Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.

To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).

View Article and Find Full Text PDF

Anal fissure causes pain and bleeding during or after bowel movements, significantly impacting individuals' quality of life. Current treatments aim to interrupt this cycle but have associated risks and limitations. The emergence of arginine, crucial for protein creation and nitric oxide (NO) production, presents an intriguing therapeutic avenue by the impact on reducing anal sphincter pressure and enhancing anoderm blood flow, due to its roles in vasodilation, anti-inflammatory responses, and collagen synthesis, which can promote wound healing and highlighting its potential as an alternative therapy.

View Article and Find Full Text PDF