Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: As the population ages, the rates of hip diseases and fragility fractures are increasing, making total hip arthroplasty (THA) one of the best methods for treating elderly patients. With the increasing number of THA surgeries and diverse surgical methods, there is a need for standard evaluation protocols. This study aimed to use deep learning algorithms to classify THA videos and evaluate the accuracy of the labelling of these videos.

Methods: In our study, we manually annotated 7 phases in THA, including skin incision, broaching, exposure of acetabulum, acetabular reaming, acetabular cup positioning, femoral stem insertion, and skin closure. Within each phase, a second trained annotator marked the beginning and end of instrument usages, such as the skin blade, forceps, Bovie, suction device, suture material, retractor, rasp, femoral stem, acetabular reamer, head trial, and real head.

Results: In our study, we utilized YOLOv3 to collect 540 operating images of THA procedures and create a scene annotation model. The results of our study showed relatively high accuracy in the clear classification of surgical techniques such as skin incision and closure, broaching, acetabular reaming, and femoral stem insertion, with a mean average precision (mAP) of 0.75 or higher. Most of the equipment showed good accuracy of mAP 0.7 or higher, except for the suction device, suture material, and retractor.

Conclusions: Scene annotation for the instrument and phases in THA using deep learning techniques may provide potentially useful tools for subsequent documentation, assessment of skills, and feedback.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973629PMC
http://dx.doi.org/10.4055/cios23280DOI Listing

Publication Analysis

Top Keywords

deep learning
12
femoral stem
12
total hip
8
hip arthroplasty
8
learning techniques
8
phases tha
8
skin incision
8
acetabular reaming
8
stem insertion
8
suction device
8

Similar Publications

Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.

Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.

View Article and Find Full Text PDF

Artificial Intelligence in Contact Dermatitis: Current and Future Perspectives.

Dermatitis

September 2025

From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.

Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.

View Article and Find Full Text PDF

Subject-independent emotion detection using EEG (Electroencephalography) using Vibrational Mode Decomposition and deep learning is made possible by the scarcity of labelled EEG datasets encompassing a variety of emotions. Labelled EEG data collection over a wide range of emotional states from a broad and varied population is challenging and resource-intensive. As a result, models trained on small or biased datasets may fail to generalize well to unknown individuals or emotional states, resulting in lower accuracy and robustness in real-world applications.

View Article and Find Full Text PDF

Objectives: We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making.

Methods: The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block.

View Article and Find Full Text PDF

Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice.

View Article and Find Full Text PDF