98%
921
2 minutes
20
The analysis of tissue cultures, particularly brain organoids, requires a sophisticated integration and coordination of multiple technologies for monitoring and measuring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Our approach enables continuous, communicative, non-invasive interactions within an Internet of Things (IoT) architecture among various sensing and actuation devices, achieving precisely timed control of biological experiments. The framework integrates microfluidics, electrophysiology, and imaging devices to maintain cerebral cortex organoids while measuring their neuronal activity. The organoids are cultured in custom, 3D-printed chambers affixed to commercial microelectrode arrays. Periodic feeding is achieved using programmable microfluidic pumps. We developed a computer vision fluid volume estimator used as feedback to rectify deviations in microfluidic perfusion during media feeding/aspiration cycles. We validated the system with a set of 7-day studies of mouse cerebral cortex organoids, comparing manual and automated protocols. The automated protocols were validated in maintaining robust neural activity throughout the experiment. The automated system enabled hourly electrophysiology recordings for the 7-day studies. Median neural unit firing rates increased for every sample and dynamic patterns of organoid firing rates were revealed by high-frequency recordings. Surprisingly, feeding did not affect firing rate. Furthermore, performing media exchange during a recording showed no acute effects on firing rate, enabling the use of this automated platform for reagent screening studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979982 | PMC |
http://dx.doi.org/10.1101/2024.03.15.585237 | DOI Listing |
EMBO J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDFNat Commun
September 2025
Columbia University, Department of Psychology, New York, NY, USA.
Racial stereotypes have been shown to bias the identification of innocuous objects, making objects like wallets or tools more likely to be identified as weapons when encountered in the presence of Black individuals. One mechanism that may contribute to these biased identifications is a transient perceptual distortion driven by racial stereotypes. Here we provide neuroimaging evidence that a bias in visual representation due to automatically activated racial stereotypes may be a mechanism underlying this phenomenon.
View Article and Find Full Text PDFExp Neurobiol
August 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Korea.
Neural tumors represent diverse malignancies with distinct molecular profiles and present particular challenges due to the blood-brain barrier, heterogeneous molecular etiology including epigenetic dysregulation, and the affected organ's critical nature. KCC-07, a selective and blood-brain barrier penetrable MBD2 (methyl CpG binding domain protein 2) inhibitor, can suppress tumor development by inducing p53 signaling, proven only in medulloblastoma. Here we demonstrate KCC-07 treatment's application to other neural tumors.
View Article and Find Full Text PDFNeurol Res
September 2025
Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.
View Article and Find Full Text PDF