Copy number deletions in the 2p16.3/ locus confer genome wide risk for autism spectrum disorder (ASD) and schizophrenia (SCZ). Prior work demonstrated that heterozygous deletions decreases synaptic strength and neurotransmitter release probability in human-iPSC derived cortical glutamatergic induced neurons and this synaptic phenotype is replicated in SCZ patient iPSCs with varying genomic deletions.
View Article and Find Full Text PDFThe mouse cortex is a canonical model for studying how functional neural networks emerge, yet it remains unclear which topological features arise from intrinsic cellular organization versus external regional cues. Mouse forebrain organoids provide a powerful system to investigate these intrinsic mechanisms. We generated dorsal (DF) and ventral (VF) forebrain organoids from mouse pluripotent stem cells and tracked their development using longitudinal electrophysiology.
View Article and Find Full Text PDFExtracellular electrophysiological recordings present unique computational challenges for neuronal classification due to noise, technical variability, and batch effects across experimental systems. We introduce HIPPIE (High-dimensional Interpretation of Physiological Patterns In Extracellular recordings), a deep learning framework that combines self-supervised pretraining on unlabeled datasets with supervised fine-tuning to classify neurons from extracellular recordings. Using conditional convolutional joint autoencoders, HIPPIE learns robust, technology-adjusted representations of waveforms and spiking dynamics.
View Article and Find Full Text PDFbioRxiv
December 2024
Experimental neuroscience techniques are advancing rapidly, with major recent developments in high-density electrophysiology and targeted electrical stimulation. In combination with these techniques, cortical organoids derived from pluripotent stem cells show great promise as models of brain development and function. Although sensory input is vital to neurodevelopment , few studies have explored the effect of meaningful input to neural cultures over time.
View Article and Find Full Text PDFHow seizures begin at the level of microscopic neuronal circuits remains unknown. Advancements in high-density CMOS-based microelectrode arrays can be harnessed to study neuronal network activity with unprecedented spatial and temporal resolution. We use high-density electrophysiology recordings to probe the network activity of human hippocampal brain slices from six patients with mesial temporal lobe epilepsy.
View Article and Find Full Text PDFElectrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies.
View Article and Find Full Text PDFSeizures are made up of the coordinated activity of networks of neurons, suggesting that control of neurons in the pathologic circuits of epilepsy could allow for control of the disease. Optogenetics has been effective at stopping seizure-like activity in non-human disease models by increasing inhibitory tone or decreasing excitation, although this effect has not been shown in human brain tissue. Many of the genetic means for achieving channelrhodopsin expression in non-human models are not possible in humans, and vector-mediated methods are susceptible to species-specific tropism that may affect translational potential.
View Article and Find Full Text PDFThe analysis of tissue cultures, particularly brain organoids, requires a sophisticated integration and coordination of multiple technologies for monitoring and measuring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Our approach enables continuous, communicative, non-invasive interactions within an Internet of Things (IoT) architecture among various sensing and actuation devices, achieving precisely timed control of biological experiments.
View Article and Find Full Text PDFNeuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human and murine brain organoids and neonatal brain slices from the murine somatosensory cortex.
View Article and Find Full Text PDFThe introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses.
View Article and Find Full Text PDFThe introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses.
View Article and Find Full Text PDFInternet Things (Amst)
November 2022
The Internet of Things (IoT) provides a simple framework to control online devices easily. IoT is now a commonplace tool used by technology companies but is rarely used in biology experiments. IoT can benefit cloud biology research through alarm notifications, automation, and the real-time monitoring of experiments.
View Article and Find Full Text PDFNeural activity represents a functional readout of neurons that is increasingly important to monitor in a wide range of experiments. Extracellular recordings have emerged as a powerful technique for measuring neural activity because these methods do not lead to the destruction or degradation of the cells being measured. Current approaches to electrophysiology have a low throughput of experiments due to manual supervision and expensive equipment.
View Article and Find Full Text PDF