Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Graphene, renowned for its exceptional electrical, optical, and mechanical properties, takes center stage in the realm of next-generation electronics. In this paper, we provide a thorough investigation into the comprehensive fabrication process of graphene field-effect transistors. Recognizing the pivotal role graphene quality plays in determining device performance, we explore many techniques and metrological methods to assess and ensure the superior quality of graphene layers. In addition, we delve into the intricate nuances of doping graphene and examine its effects on electronic properties. We uncover the transformative impact these dopants have on the charge carrier concentration, bandgap, and overall device performance. By amalgamating these critical facets of graphene field-effect transistors fabrication and analysis, this study offers a holistic understanding for researchers and engineers aiming to optimize the performance of graphene-based electronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971952PMC
http://dx.doi.org/10.3390/mi15030406DOI Listing

Publication Analysis

Top Keywords

graphene field-effect
8
field-effect transistors
8
device performance
8
graphene
7
comprehensive study
4
study design
4
design graphene
4
graphene transistor
4
transistor graphene
4
graphene renowned
4

Similar Publications

Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.

View Article and Find Full Text PDF

Wafer-Scale Demonstration of BEOL-Compatible Ambipolar MoS Devices Enabled by Plasma-Enhanced Atomic Layer Deposition.

ACS Appl Mater Interfaces

September 2025

Nanoelectronics Graphene and 2D Materials Laboratory, CITIC-UGR, Department of Electronics, University of Granada, Granada 18014, Spain.

The relentless scaling of semiconductor technology demands materials beyond silicon to sustain performance improvements. Transition metal dichalcogenides (TMDs), particularly MoS, offer excellent electronic properties; however, achieving scalable and CMOS-compatible fabrication remains a critical challenge. Here, we demonstrate a scalable and BEOL-compatible approach for the direct wafer-scale growth of MoS devices using plasma-enhanced atomic layer deposition (PE-ALD) at temperatures below 450 °C, fully compliant with CMOS thermal budgets.

View Article and Find Full Text PDF

Chemical doping has emerged as a powerful approach for modulating the electronic properties of graphene, and particularly for enabling its integration into advanced electronic and optoelectronic devices. While considerable progress has been made in achieving stable p-type doping, realizing efficient and reliable n-type doping remains a greater challenge due to the inherent instability of most electron-donating dopants and intrinsic semi-metallic nature of pristine graphene. This review summarises the recent developments in n-type chemical doping of graphene films, with a primary focus on substitutional doping and surface charge transfer mechanisms.

View Article and Find Full Text PDF

Chip-Scale Graphene/IGZO Cold Source FET Array Enabling Sub-60 mV dec Super-Steep Subthreshold Swing.

Adv Mater

September 2025

Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.

In this study, the first sub-60 mV dec super-steep subthreshold swing (SS) of graphene/InGaZnO (IGZO) cold-source field-effect transistor (CSFET) arrays is demonstrated. The linear density of states of the Dirac-cone-type graphene suppresses the Boltzmann thermal tail near the graphene/IGZO interface which in turn causes super-exponentially decaying electron density with increasing energy, leading to an extremely low off current and SS value. In particular, by introducing an HfO high-k dielectric with a low body factor, the surface potential is effectively modulated, further reducing SS by ≈46.

View Article and Find Full Text PDF

Real-time, multiplexed monitoring of wound infection biomarkers is essential for early detection of infection and inflammation, as well as for evaluating wound healing progression. However, existing biosensing technologies lack the sensitivity, specificity, and integration needed to meet these clinical demands. To address current limitations in wound monitoring, we developed a portable and multimodal sensor system capable of simultaneously detecting uric acid (UA), phenazine-1-carboxylic acid (PCA), interleukin-6 (IL-6), and pH.

View Article and Find Full Text PDF