98%
921
2 minutes
20
The timely differentiation of the AviPro Salmonella VAC T and VAC E strains from the wild-type ser. Typhimurium and ser. Enteritidis isolates is crucial for effectively monitoring veterinary isolates. Currently, the distinction between field and vaccine strains has been conducted routinely via phenotypic antimicrobial resistance testing since the vaccines were first introduced more than 20 years ago, and the differentiation based on the antimicrobial resistance profile is still a valid and well-established method. However, an alternative method was sought for those laboratories that prefer a PCR-based method for logistic and/or operational reasons. In this study, we developed two triplex Real-Time PCR reactions that targeted conserved and specific mutations and, therefore, enabled the reliable differentiation of field and vaccine strains. To validate the effectiveness of both assays, we extensively tested them on a dataset consisting of 405 bacterial strains. The results demonstrated a 100% sensitivity and specificity for distinguishing both ser. Typhimurium and Enteritidis, although a confirmed culture is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10974957 | PMC |
http://dx.doi.org/10.3390/vetsci11030120 | DOI Listing |
Vaccine
September 2025
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Jiangxia Laboratory, Wuhan 430200, China. Electronic address:
The spillover and spillback of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals, especially companion animals, threaten global public health security. However, risk assessment of SARS-CoV-2 variants infecting companion animals and the development of corresponding prevention and control technologies are lacking. The aim of this study is to assess the potential risk of enhancement of the infectivity of SARS-CoV-2 in cats owing to mutations at key sites within the spike (S) protein receptor-binding domain (RBD) region and develop an efficient vaccine to cross-neutralize high-risk SARS-CoV-2 variants.
View Article and Find Full Text PDFBackground: A significant surge in pertussis cases since early 2023 has raised serious public health concerns. To investigate the potential mechanisms contributing to this increased prevalence, we collected throat swab specimens from children exhibiting pertussis symptoms and conducted detailed molecular characterization.
Methods: All Bordetella pertussis (B.
Pediatr Infect Dis J
September 2025
From the School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
Background: Obesity was a risk factor for severe COVID-19 in children during early outbreaks of ancestral SARS-CoV-2 and the Delta variant. However, the relationship between obesity and COVID-19 severity during the Omicron wave remains unclear.
Methods: This multicenter, observational study included polymerase chain r eaction-confirmed SARS-CoV-2-infected children and adolescents from Australia, Brazil, Italy, Portugal, Switzerland, Thailand, the United Kingdom and the United States hospitalized between January 1, 2020, and March 31, 2022.
Infect Immun
September 2025
School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA.
Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.
View Article and Find Full Text PDFInfect Immun
September 2025
National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.
View Article and Find Full Text PDF