Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Photon-counting detector (PCD) computed tomography (CT) allows for the reconstruction of virtual monoenergetic images (VMI) at different thresholds.
Objective: The aim of our study was to evaluate the optimal arterial contrast in portal venous (pv) scans regarding objective parameters and subjective image quality for different virtual keV levels.
Methods: We identified 40 patients that underwent a CT scan with an arterial and pv phase on a PCD-CT (NAEOTOM alpha, Siemens Healthineers, Forchheim, Germany). The attenuation of abdominal arteries on pv phases was measured for different virtual keV levels in a monoenergetic+ application profile and for polychromatic (pc) arterial images. Two independent readers assessed subjective image quality, including vascular contrast in pv scans at different energy levels. Additionally, signal- and contrast-to-noise ratios (SNR and CNR) were measured.
Results: Our results showed increasing arterial attenuation levels with decreasing energy levels in virtual monoenergetic imaging on pv scans with the highest attenuation at 40 keV, significantly higher than in the pc arterial phase (439 ± 97 HU vs. 360 ± 97, < 0.001). Noise, SNR, and CNR were worse at this energy level ( < 0.001). Pv VMI showed less noise at energy levels above 70 keV (all < 0.001). Subjective image quality was rated best at 70 keV, vascular contrast was best at 40 keV.
Conclusions: Our research suggests that virtual monoenergetic images at 40 keV in Mono+ mode derived from a PCD-CT can be a feasible alternative to a true arterial phase for assessment of vessels with worse CNR and SNR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969743 | PMC |
http://dx.doi.org/10.3390/diagnostics14060627 | DOI Listing |