Publications by authors named "Isabelle Ayx"

Generative artificial intelligence models facilitate open-data sharing by proposing synthetic data as surrogates of real patient data. Despite the promise for healthcare, some of these models are susceptible to patient data memorization, where models generate patient data copies instead of novel synthetic samples, resulting in patient re-identification. Here we assess memorization in unconditional latent diffusion models by training them on a variety of datasets for synthetic data generation and detecting memorization with a self-supervised copy detection approach.

View Article and Find Full Text PDF

: Cardiovascular diseases are the leading cause of global mortality, with 80% of coronary heart disease in patients over 65. Understanding aging cardiovascular structures is crucial. Photon-counting computed tomography (PCCT) offers improved spatial and temporal resolution and better signal-to-noise ratio, enabling texture analysis in clinical routines.

View Article and Find Full Text PDF

Objective: Photon-Counting Computed Tomography (PCCT) offers significant advancements in aortic imaging, especially for vascular applications. Its Ultra-High-Resolution (UHR) mode enhances the visualization of small vascular structures, aiding surgical planning while reducing radiation exposure. This study assesses whether UHR abdominal aortic angiography with PCCT improves resolution and noise ratio compared to Energy-Integrating Computed Tomography (EICT) without increasing radiation dose.

View Article and Find Full Text PDF

Purpose: Computed tomography (CT) is crucial in oncologic imaging for precise diagnosis and staging. Beam-hardening artifacts from contrast media in the superior vena cava can degrade image quality and obscure adjacent structures, complicating lymph node assessment. This study examines the use of virtual monoenergetic reconstruction with photon-counting detector CT (photon-counting CT) to mitigate these artifacts.

View Article and Find Full Text PDF

The need for effective early detection and optimal therapy monitoring of cardiovascular diseases as the leading cause of death has led to an adaptation of the guidelines with a focus on cardiac computed tomography (CCTA) in patients with a low to intermediate risk of coronary heart disease (CHD). In particular, the introduction of photon-counting computed tomography (PCCT) in CT diagnostics promises significant advances through higher temporal and spatial resolution, and also enables advanced texture analysis, known as radiomics analysis. Originally developed in oncological imaging, radiomics analysis is increasingly being used in cardiac imaging and research.

View Article and Find Full Text PDF

Objectives: Coronary CT angiography (CCTA) is an excellent tool in ruling out coronary artery disease (CAD) but tends to overestimate especially highly calcified plaques. To reduce diagnostic invasive catheter angiographies (ICA), current guidelines recommend CT-FFR to determine the hemodynamic significance of coronary artery stenosis. Photon-Counting Detector CT (PCCT) revolutionized CCTA and may improve CT-FFR analysis in guiding patients.

View Article and Find Full Text PDF

Aim: Recent research highlights the role of pericoronary adipose tissue (PCAT) in coronary artery disease (CAD) development. PCAT has been recognized as a metabolically active tissue involved in local inflammation and oxidative stress, potentially impacting CAD initiation and progression. Radiomics texture analysis shows promising results to better understand the link between PCAT quality and CAD risk.

View Article and Find Full Text PDF

Purpose: Tumoral heterogeneity poses a challenge for personalized cancer treatments. Especially in metastasized cancer, it remains a major limitation for successful targeted therapy, often leading to drug resistance due to tumoral escape mechanisms. This work explores a non-invasive radiomics-based approach to capture textural heterogeneity in liver lesions and compare it between colorectal cancer (CRC) and pancreatic cancer (PDAC).

View Article and Find Full Text PDF

Objectives: This study aims to investigate how radiomics analysis can help understand the association between plaque texture, epicardial adipose tissue (EAT), and cardiovascular risk. Working with a Photon-counting CT, which exhibits enhanced feature stability, offers the potential to advance radiomics analysis and enable its integration into clinical routines.

Methods: Coronary plaques were manually segmented in this retrospective, single-centre study and radiomic features were extracted using pyradiomics.

View Article and Find Full Text PDF

Background: Photon-counting detector (PCD) computed tomography (CT) allows for the reconstruction of virtual monoenergetic images (VMI) at different thresholds.

Objective: The aim of our study was to evaluate the optimal arterial contrast in portal venous (pv) scans regarding objective parameters and subjective image quality for different virtual keV levels.

Methods: We identified 40 patients that underwent a CT scan with an arterial and pv phase on a PCD-CT (NAEOTOM alpha, Siemens Healthineers, Forchheim, Germany).

View Article and Find Full Text PDF

(1) Background: Epicardial adipose tissue influences cardiac biology in physiological and pathological terms. As it is suspected to be linked to coronary artery calcification, identifying improved methods of diagnostics for these patients is important. The use of radiomics and the new Photon-Counting computed tomography (PCCT) may offer a feasible step toward improved diagnostics in these patients.

View Article and Find Full Text PDF

Introduction: Pericoronary adipose tissue (PCAT) stands in complex bidirectional interaction with the surrounding arteries and is known to be connected to many cardiovascular diseases involving vascular inflammation. PCAT texture may be influenced by other cardiovascular risk factors such as hypercholesterolemia. The recently established photon-counting CT could improve texture analysis and help detect those changes by offering higher spatial resolution and signal-to-noise ratio.

View Article and Find Full Text PDF

Objectives: The goal of this study is to demonstrate the performance of radiomics and CNN-based classifiers in determining the primary origin of gastrointestinal liver metastases for visually indistinguishable lesions.

Methods: In this retrospective, IRB-approved study, 31 pancreatic cancer patients with 861 lesions (median age [IQR]: 65.39 [56.

View Article and Find Full Text PDF

Background: Photon-counting detector computed tomography (PCD-CT) is a promising new technology with the potential to fundamentally change workflows in the daily routine and provide new quantitative imaging information to improve clinical decision-making and patient management.

Method: The contents of this review are based on an unrestricted literature search of PubMed and Google Scholar using the search terms "photon-counting CT", "photon-counting detector", "spectral CT", "computed tomography" as well as on the authors' own experience.

Results: The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCD-CT allows for the counting of every single photon at the detector level.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate small vessel stent visualization using CT is difficult, but photon-counting CT (PCD-CT) shows promise in improving this assessment compared to traditional energy-integrating CT (EID-CT).
  • A study involved scanning 12 water-contrast agent filled stents with PCD-CT and EID-CT, evaluating image quality subjectively with radiologists and objectively through intensity profile calculations.
  • PCD-CT produced better overall reading scores and higher diagnostic confidence, suggesting it may enhance small vessel stent imaging effectiveness, though further research is needed for clinical application.
View Article and Find Full Text PDF

Background: Cardiovascular diseases remain the world's primary cause of death. The identification and treatment of patients at risk of cardiovascular events thus are as important as ever. Adipose tissue is a classic risk factor for cardiovascular diseases, has been linked to systemic inflammation, and is suspected to contribute to vascular calcification.

View Article and Find Full Text PDF

Objectives: Radiomics image data analysis offers promising approaches in research but has not been implemented in clinical practice yet, partly due to the instability of many parameters. The aim of this study is to evaluate the stability of radiomics analysis on phantom scans with photon-counting detector CT (PCCT).

Methods: Photon-counting CT scans of organic phantoms consisting of 4 apples, kiwis, limes, and onions each were performed at 10 mAs, 50 mAs, and 100 mAs with 120-kV tube current.

View Article and Find Full Text PDF

Coronary computed tomography angiography has become a mainstay in diagnosing coronary artery disease and is increasingly used in screening symptomatic patients. Recently, photon-counting computed tomography (PCCT) has been introduced into clinical practice, offering higher spatial and temporal resolution. As the applied radiation dose is highly dependent on the choice of scan mode and is lowest using the ultra-fast high-pitch (FLASH) mode, guidelines for their application are needed.

View Article and Find Full Text PDF

In recent years, there has been an increasing recognition of coronary computed tomographic angiography (CCTA) and gated non-contrast cardiac CT in the workup of coronary artery disease in patients with low and intermediate pretest probability, through the readjustment guidelines by medical societies. However, in routine clinical practice, these CT data sets are usually evaluated dominantly regarding relevant coronary artery stenosis and calcification. The implementation of radiomics analysis, which provides visually elusive quantitative information from digital images, has the potential to open a new era for cardiac CT that goes far beyond mere stenosis or calcification grade estimation.

View Article and Find Full Text PDF

Background: With the clinical release of a photon counting detector-based computed tomography (CT) system, the potential benefits of this new technology need to be evaluated clinically. Literature concerning this new generation of detector is sparse, especially in the field of pediatric radiology. Therefore, this study outlines our initial experience with ultra-low dose chest CT imaging on the new photon counting CT system.

View Article and Find Full Text PDF

Perivascular adipose tissue is known to be metabolically active. Volume and density of periaortic adipose tissue are associated with aortic calcification as well as aortic diameter indicating a possible influence of periaortic adipose tissue on the development of aortic calcification. Due to better spatial resolution and signal-to-noise ratio, new CT technologies such as photon-counting computed tomography may allow the detection of texture alterations of periaortic adipose tissue depending on the existence of local aortic calcification possibly outlining a biomarker for the development of arteriosclerosis.

View Article and Find Full Text PDF

Feature stability and standardization remain challenges that impede the clinical implementation of radiomics. This study investigates the potential of spectral reconstructions from photon-counting computed tomography (PCCT) regarding organ-specific radiomics feature stability. Abdominal portal-venous phase PCCT scans of 10 patients in virtual monoenergetic (VM) (keV 40-120 in steps of 10), polyenergetic, virtual non-contrast (VNC), and iodine maps were acquired.

View Article and Find Full Text PDF

The aim of this paper is to evaluate the diagnostic image quality of spectral dual-source photon-counting detector coronary computed tomography angiography (PCD-CCTA) for coronary artery disease in a multicenter study. The image quality (IQ), assessability, contrast-to-noise ratio (CNR), Agatston score, and radiation exposure were measured. Stenoses were quantified and compared with invasive coronary angiography, if available.

View Article and Find Full Text PDF

The coronary artery calcium score is an independent risk factor of the development of adverse cardiac events. The severity of coronary artery calcification may influence the myocardial texture. Due to higher spatial resolution and signal-to-noise ratio, new CT technologies such as PCCT may improve the detection of texture alterations depending on the severity of coronary artery calcification.

View Article and Find Full Text PDF