Image Quality and Radiation Exposure in Abdominal Angiography: A Head-to-Head Comparison of Conventional Detector-Dose-Driven Versus Contrast-to-Noise Ratio-Driven Exposure Control at Various Source-to-Image Receptor Distances and Collimations in a Pilot Phantom and Animal Study.

Invest Radiol

From the Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (T.W., L.S., S.K.M., T.C.M., C.L.A., F.K.W., B.C.M.); Department of Diagnostic and Interventional Radiology and Neuroradiology, St. Bernward Hospital, Hildesheim, Germany (J.B.H.); and Institut

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: This phantom and animal pilot study aimed to compare image quality and radiation exposure between detector-dose-driven exposure control (DEC) and contrast-to-noise ratio (CNR)-driven exposure control (CEC) as functions of source-to-image receptor distance (SID) and collimation.

Materials And Methods: First, an iron foil simulated a guide wire in a stack of polymethyl methacrylate and aluminum plates representing patient thicknesses of 15, 25, and 35 cm. Fluoroscopic images were acquired using 5 SIDs ranging from 100 to 130 cm and 2 collimations (full field of view, collimated field of view: 6 × 6 cm). The iron foil CNRs were calculated, and radiation doses in terms of air kerma rate were obtained and assessed using a multivariate regression. Second, 5 angiographic scenarios were created in 2 anesthetized pigs. Fluoroscopic images were acquired at 2 SIDs (110 and 130 cm) and both collimations. Two blinded experienced readers compared image quality to the reference image using full field of view at an SID of 110 cm. Air kerma rate was obtained and compared using t tests.

Results: Using DEC, both CNR and air kerma rate increased significantly at longer SID and collimation below the air kerma rate limit. When using CEC, CNR was significantly less dependent of SID, collimation, and patient thickness. Air kerma rate decreased at longer SID and tighter collimation. After reaching the air kerma rate limit, CEC behaved similarly to DEC. In the animal study using DEC, image quality and air kerma rate increased with longer SID and collimation ( P < 0.005). Using CEC, image quality was not significantly different than using longer SID or tighter collimation. Air kerma rate was not significantly different at longer SID but lower using collimation ( P = 0.012).

Conclusions: CEC maintains the image quality with varying SID and collimation stricter than DEC, does not increase the air kerma rate at longer SID and reduces it with tighter collimation. After reaching the air kerma rate limit, CEC and DEC perform similarly.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000001079DOI Listing

Publication Analysis

Top Keywords

air kerma
40
kerma rate
40
image quality
24
longer sid
24
sid collimation
16
exposure control
12
field view
12
rate limit
12
limit cec
12
tighter collimation
12

Similar Publications

Robot-assisted percutaneous coronary intervention: a prospective, multicenter, randomized controlled, non-inferiority clinical trial.

J Geriatr Cardiol

August 2025

Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing,

Objective: To evaluate the safety and effectiveness of robot-assisted percutaneous coronary intervention (R-PCI) compared to traditional manual percutaneous coronary intervention (M-PCI).

Methods: This prospective, multicenter, randomized controlled, non-inferior clinical trial enrolled patients with coronary heart disease who met the inclusion criteria and had indications for elective percutaneous coronary intervention. Participants were randomly assigned to either the R-PCI group or the M-PCI group.

View Article and Find Full Text PDF

Evaluation of cubic voxel effects on dose calculation for Iridium-192 high dose rate using TOPAS particle simulation.

Rep Pract Oncol Radiother

August 2025

Laboratory of Engineering in Chemistry and Physics of Matter (LICPM), Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni-Mellal, Morocco.

Background: This study investigates the impact of voxel size on dose calculations for the FlexiSource iridium-192 (Ir) high-dose-rate brachytherapy source using the TOol for PArticle Simulation (TOPAS) Monte Carlo code. It aims to establish a new dataset for future research by determining TG-43 parameters.

Materials And Methods: TG-43 parameters (radial function and anisotropy function) were calculated using 0.

View Article and Find Full Text PDF

Objectives: Establishing paediatric DRLs is challenging due to sparse data availability. The objective was to assess paediatric fluoroscopic dose levels in Dutch clinical practice, as current diagnostic reference levels (DRLs) need updating following the European Guidelines on DRLs for Paediatric Imaging (PiDRL).

Material And Methods: Air Kerma-area Product (KAP) values were retrospectively collected from paediatric patients (0-18 years) who underwent fluoroscopic procedures in nine Dutch hospitals between 01-01-2017 and 01-06-2021.

View Article and Find Full Text PDF

X-ray multimeter performance under calibration laboratory conditions.

Med Phys

September 2025

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Background: Estimating dose delivered to patients for a typical mammographic or radiologic examination requires accurate knowledge of several beam quantities. X-ray multimeters (XMMs) are compact, solid-state semiconductor dosimeters that have become common for conventional QA measurements due to their ease of use.

Purpose: In this investigation, the performance of two XMMs in low-energy x-ray calibration beams was assessed, and the stability of the manufacturer's calibration over time was evaluated.

View Article and Find Full Text PDF

Background: Digital dynamic radiography (DDR), integrated into Konica Minolta's portable mKDR system, provides dynamic imaging for pulmonary, orthopedic, and interventional applications. While DDR is not classified as fluoroscopy, its use of pulsed x-rays for cine-like image sequences raises concerns about radiation exposure and shielding, particularly given the absence of a primary beam stop, high output capabilities, and increasing clinical adoption.

Purpose: To characterize the primary and scatter radiation output of a DDR system and compare it against commonly used mobile C-arm fluoroscopy units, and to evaluate shielding requirements and potential occupational exposure risks associated with DDR use.

View Article and Find Full Text PDF