98%
921
2 minutes
20
Background: Deep learning using clinical and imaging data may improve pre-treatment prognostication in ischemic stroke patients undergoing endovascular thrombectomy (EVT).
Methods: Deep learning models were trained and tested on baseline clinical and imaging (CT head and CT angiography) data to predict 3-month functional outcomes in stroke patients who underwent EVT. Classical machine learning models (logistic regression and random forest classifiers) were constructed to compare their performance with the deep learning models. An external validation dataset was used to validate the models. The MR PREDICTS prognostic tool was tested on the external validation set, and its performance was compared with the deep learning and classical machine learning models.
Results: A total of 975 patients (550 men; mean±SD age 67.5±15.1 years) were studied with 778 patients in the model development cohort and 197 in the external validation cohort. The deep learning model trained on baseline CT and clinical data, and the logistic regression model (clinical data alone) demonstrated the strongest discriminative abilities for 3-month functional outcome and were comparable (AUC 0.811 vs 0.817, Q=0.82). Both models exhibited superior prognostic performance than the other deep learning (CT head alone, CT head, and CT angiography) and MR PREDICTS models (all Q<0.05).
Conclusions: The discriminative performance of deep learning for predicting functional independence was comparable to logistic regression. Future studies should focus on whether incorporating procedural and post-procedural data significantly improves model performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jnis-2023-021154 | DOI Listing |
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, COMSATS University Islamabad, Sahiwal, Pakistan.
The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.
View Article and Find Full Text PDFPLoS One
September 2025
College of Business Administration, Northern Border University (NBU), Arar, Kingdom of Saudi Arabia.
The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.
View Article and Find Full Text PDFBioinformatics
September 2025
Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.
Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.
IEEE Trans Biomed Eng
September 2025
Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.
View Article and Find Full Text PDF