Generation of induced pluripotent stem cells from rat fibroblasts and optimization of its differentiation into mature functional neurons.

J Neurosci Methods

Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA. Electronic address:

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Induced pluripotent stem cells (iPSCs) derived neural stem cells (NSCs) provide a potential for autologous neural transplantation therapy following neurological insults. Thus far, in preclinical studies the donor iPSCs-NSCs are mostly of human or mouse origin with concerns centering around graft rejection when applied to rat brain injury models. For better survival and integration of transplanted cells in the injured brain in rat models, use of rat-iPSC-NSCs and in combination with biomaterials is of advantageous. Herein, we report a detailed method in generating rat iPSCs with improved reprogramming efficiency and differentiation into neurons.

New Method: Rat fibroblasts were reprogrammed into iPSCs with polybrene and EF1α-STEMCCA-LoxP lentivirus vector. Pluripotency characterization, differentiation into neuronal linage cells were assessed with RT-qPCR, Western blotting, immunostaining and patch-clamp methods. Cells were cultured in a custom-designed integrin array system as well as in a hydrogel-based 3D condition.

Results: We describe a thorough method for the generation of rat-iPSC-NSCs, and identify integrin αβ as a substrate for the optimal growth of rat-iPSC-NSCs. Furthermore, with hydrogel as the supporting biomaterial in the 3-D culture, when combined with integrin αβ binding peptide, it forms a conducive environment for optimal growth and differentiation of iPSC-NSCs into mature neurons.

Comparison With Existing Methods: Published studies about rat-iPSC-NSCs are rare. This study provides a detailed protocol for the generation of rat iPSC-NSCs and optimal growth conditions for neuronal differentiation. Our method is useable for studies to assess the utility of rat iPSC-NSCs for neural transplantation in rat brain injury models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060920PMC
http://dx.doi.org/10.1016/j.jneumeth.2024.110114DOI Listing

Publication Analysis

Top Keywords

stem cells
12
optimal growth
12
induced pluripotent
8
pluripotent stem
8
rat
8
rat fibroblasts
8
neural transplantation
8
rat brain
8
brain injury
8
injury models
8

Similar Publications

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.

View Article and Find Full Text PDF