Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Normal-weight individuals with usual-onset type 2 diabetes have reduced β-cell function and greater insulin sensitivity compared with their obese counterparts. The relative contribution of β-cell dysfunction and insulin resistance to young-onset type 2 diabetes (YOD) among normal-weight individuals is not well established. In 44 individuals with YOD (24 with normal weight and 20 with obesity) and 24 healthy control individuals with normoglycemia (12 with normal weight and 12 with obesity), we conducted 2-h 12 mmol/L hyperglycemic clamps to measure acute (0-10 min) and steady-state (100-120 min) insulin and C-peptide responses, as well as insulin sensitivity index. Normal-weight individuals with YOD had lower acute insulin response, steady-state insulin and C-peptide responses, and a higher insulin sensitivity index compared with their obese counterparts with YOD. Compared with BMI-matched healthy control individuals, normal-weight individuals with YOD had lower acute and steady-state insulin and C-peptide responses but a similar insulin sensitivity index. The impairment of steady-state β-cell response relative to healthy control individuals was more pronounced in normal-weight versus obese individuals with YOD. In conclusion, normal-weight Chinese with YOD exhibited worse β-cell function but preserved insulin sensitivity relative to obese individuals with YOD and BMI-matched healthy individuals with normoglycemia. The selection of glucose-lowering therapy should account for pathophysiological differences underlying YOD between normal-weight and obese individuals.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db23-0966DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
24
individuals yod
20
normal-weight individuals
16
β-cell function
12
type diabetes
12
individuals
12
healthy control
12
control individuals
12
insulin c-peptide
12
c-peptide responses
12

Similar Publications

Background: Sleep and frailty are established influencing factors for cardiometabolic diseases (CMDs). However, their joint effects on cardiometabolic multimorbidity (CMM) in older adults remain poorly understood. This study aimed to assess the joint effect of sleep health and frailty on CMD prevalence and severity, with an emphasis on subgroup-specific health risk profiles.

View Article and Find Full Text PDF

Insulin therapy remains a cornerstone in the management of type 2 diabetes mellitus (T2DM), especially in patients experiencing progressive loss of pancreatic beta-cell function or those with inadequate glycemic control despite oral antidiabetic therapy. This review synthesized clinical outcomes from 44 peer-reviewed case reports published between 2019 and 2024, identified through systematic searches in PubMed and Scopus. The included cases involved 15 males and 29 females, with patient ages ranging from 11 to 91 years (mean 53 ± 20.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM), a type of diabetes mellitus occurring in pregnant women, increases the risk of birth trauma. Solute carrier family 2 member 4 (SLC2A4) polymorphism is notably associated with GDM susceptibility; however, the mechanism is unknown. In the present study, HTR-8/SVneo cells were treated with high glucose concentrations and transfected with SLC2A4 and Forkhead box O (FoxO)1 to investigate their roles in the insulin (INS) resistance of GDM trophoblast cells.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a rising health issue linked to poor diet and gut microbiota dysbiosis. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, high in polyphenols and anti-inflammatory nutrients, may help protect against MASLD. This study examined how adherence to the MIND diet relates to MASLD severity, focusing on hepatic steatosis, fibrosis, insulin resistance, inflammation, and gut microbiota diversity.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.

View Article and Find Full Text PDF