98%
921
2 minutes
20
Artificial superhydrophobic surfaces hold significant potential in various domains, encompassing self-cleaning, droplet manipulation, microfluidics, and thermal management. Consequently, there is a burgeoning demand for cost-effective, mass-producible, and easily fabricated superhydrophobic surfaces for commercial and industrial applications. This research introduces an efficient, uncomplicated method for constructing hierarchical structures on hard substrates such as binderless tungsten carbide (WC) and glass substrates. The WC substrates were processed by using electrical discharge machining (EDM) with a magnetic-assisted self-assembly sheet electrode. The resultant surfaces comprised micropillars/microgrooves and diminutive craters formed by discharge and ablation, respectively. These surfaces exhibited superior hydrophobic properties, which can be attributed to the modified surface energy and surface texture construction. Our study indicates that a superhydrophobic surface can be achieved on a textured binderless WC. The maximum contact angle and minimum roll-off angle of the hierarchical structure induced by EDM with a magnetic-assisted self-assembly sheet electrode are about 158 and 5°, respectively. The advancing and receding angles are about 161° ± 2 and 157° ± 3, respectively, when the base is tilted at 3°. Furthermore, we have successfully replicated this superhydrophobic structured surface on glass substrates utilizing glass molding technology. This innovative approach to creating superhydrophobic surfaces on hard materials paves the way for the mass production of functional structures on other materials, such as metallic glass, titanium alloy, and mold steel. Most crucially, the proposed fabrication technique offers a straightforward, cost-effective route for creating functional surfaces, rendering it attractive for large-scale industrial production due to its considerable application prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c19487 | DOI Listing |
Nanoscale
December 2024
Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark.
The assembly of hybrid nanoparticles is a pioneering route for developing nanoscale functional devices, enabling breakthroughs in various fields, including electronics, photonics, energy, sensing, and biomedical applications. Here, we focus on the templated assembly of nano-sized colloidal systems using a combination of silica-coated superparamagnetic beads (MBs) and polymer-coated gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs). These hybrid nanoparticles introduce new functionalities that allow them to be used as nanomachines with numerous possible applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2024
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Artificial superhydrophobic surfaces hold significant potential in various domains, encompassing self-cleaning, droplet manipulation, microfluidics, and thermal management. Consequently, there is a burgeoning demand for cost-effective, mass-producible, and easily fabricated superhydrophobic surfaces for commercial and industrial applications. This research introduces an efficient, uncomplicated method for constructing hierarchical structures on hard substrates such as binderless tungsten carbide (WC) and glass substrates.
View Article and Find Full Text PDFTalanta
June 2024
College of Food Science and Technology, Shanghai Ocean University (SHOU), Hucheng Ring Road 999, Pudong New District, 201306, Shanghai, China. Electronic address:
In this study, we established a versatile and simple magnetic-assisted microfluidic method for fast bacterial detection. Quantum dots (QDs) were loaded onto magnetic beads (MBs) to construct performance enhanced on-chip capture of bacteria. Escherichia coli (E.
View Article and Find Full Text PDFTalanta
December 2019
College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. Electronic address:
Self-assembly of building blocks for constructing multifunctional materials has opened prospects for sensing applications in the biomedical fields. In particular, the combination of aptamer with DNA assembly-based nanotechnology has greatly improved the performance of cancer cell detection. Nevertheless, the cancer cell detection strategies of integrating aptamer with protein are relatively sparse.
View Article and Find Full Text PDFAnal Bioanal Chem
May 2019
Department of Chemistry, The Chinese University of Hong Kong, New Territories, HKSAR, China.
In this study, a magnetic molecular sieve material (FeO@MCM-48) was synthesized by a combination of solvothermal and self-assembly methods. The physicochemical properties of the magnetic molecular sieve material were characterized by scanning electron microscopy, energy-dispersive spectroscopy, magnetic hysteresis loop measurements, transmission electron microscopy, powder X-ray diffraction, N adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The as-synthesized nanocomposite showed various advantages, including easy magnetic-assisted separation, high specific surface area, and a highly interwoven and branched mesoporous structure.
View Article and Find Full Text PDF