98%
921
2 minutes
20
In this study, we established a versatile and simple magnetic-assisted microfluidic method for fast bacterial detection. Quantum dots (QDs) were loaded onto magnetic beads (MBs) to construct performance enhanced on-chip capture of bacteria. Escherichia coli (E. coli), as a model bacterium was studied. CdSe QDs were deposited onto the surface of FeO MBs through layer-by-layer self-assembly to enhance the loading of antibodies (Abs). MBs functionalized with anti-E. coli antibody molecules in a micropillar-based microfluidic chip were utilized to capture E. coli, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used for characterization of captured bacteria. This method was found capable of specifically isolating E. coli within the range of 1.0 to 1.0 × 10 CFU/mL, having a detection limit (LOD) of 10 CFU/mL. The average similarity score among mass spectra for the bacterial capture obtained in independent experiments is calculated as 0.97 ± 0.01 (n = 3), which shows this work's excellent reproducibility for bacterial capture. Bacterial growth on ready-to-eat (RTE) foods during its time of storage was successfully monitored. The present protocol has promising potential for microbial control and pathogen detection in the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.125880 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:
This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
Discov Nano
September 2025
Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.
Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.
View Article and Find Full Text PDF