Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The inherent inertness and striking physicochemical similarities of krypton and xenon pose significant challenges to their separation. Reported herein is the efficient xenon capture and xenon/krypton adsorptive separation by transition metal-free zeolites under ambient conditions. The polarized environment of zeolite, denoted as local polarity, can be tuned by changing the topology, framework composition, and counter-cations, which in turn correlates with the guest-host interaction and separation performance. Chabazite zeolite with a framework Si/Al ratio of 2.5 and Ca as the counter-cations, namely, Ca-CHA-2.5, is developed as a state-of-the-art zeolite adsorbent, showing remarkable performance, , high dynamic xenon uptake, high xenon/krypton separation selectivity, and good recyclability, in the adsorptive separation of the xenon/krypton mixture. Grand Canonical Monte Carlo simulation reveals that extraframework Ca cations act as the primary binding sites for xenon and can stabilize xenon molecules together with the chabazite framework, whereas krypton molecules are stabilized by weak guest-host interaction with the zeolite framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c13994 | DOI Listing |