98%
921
2 minutes
20
Frequency-dependent linear-permittivity measurements are commonplace in the literature, providing key insights into the structure of dielectric materials. These measurements describe a material's dynamic response to a small applied electric field. However, nonlinear dielectric materials are widely used for their responses to large applied fields, including switching in ferroelectric materials, and field tuning of the permittivity in paraelectric materials. These behaviors are described by nonlinear permittivity. Nonlinear-permittivity measurements are fraught with technical challenges because of the complex electrical coupling between a sample and its environment. Here, we describe a technique for measuring the complex nonlinear permittivity that circumvents many of the difficulties associated with other approaches. We validate this technique by measuring the nonlinear permittivity of a tunable thin film up to 40 GHz and comparing our results with a phenomenological model. These measurements provide insight into the dynamics of nonlinear dielectric materials down to picosecond timescales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938468 | PMC |
http://dx.doi.org/10.1103/physrevapplied.13.044026 | DOI Listing |
ACS Nano
September 2025
Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:
Polyimide (PI) faces significant challenges in highly integrated and high-frequency electronic devices due to its inherently low thermal conductivity and relatively high dielectric constant (D). In this study, topologically micro-crosslinked PI films were synthesized by incorporating highly conjugated multi-amino polydiacetylene (MAPDA) into a fluorinated PI matrix. The unique alkene-alkyne alternating conjugated structure of MAPDA, combined with the strong electron-withdrawing trifluoromethyl groups in the matrix, promotes charge redistribution and reduces the dipole moment and polarizability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Lead-free electroceramics have attracted significant research interest as alternatives to lead-containing systems due to concerns related to lead's toxicity to human health and the environment. Solid solutions based on bismuth sodium titanate (BNT) and barium titanate (BT), particularly those with compositions near the morphotropic phase boundary (MPB), such as 0.94 BiNaTiO-0.
View Article and Find Full Text PDFACS Nano
September 2025
School of Physics and Key Lab of Quantum Materials and Devices of the Ministry of Education, Southeast University, Nanjing 211189, P. R. China.
While hexagonal boron nitride (hBN) hosts promising room-temperature quantum emitters for hybrid quantum photonic circuits, scalable deterministic integration and insufficient brightness alongside low photon collection and coupling efficiencies remain unresolved challenges. We present a femtosecond laser nanoengineering platform that enables the site-specific generation of hBN single-photon source (SPS) arrays. First-principles density functional theory (DFT) calculations and polarization-resolved spectroscopy confirm the atomic origin of emission as interfacial defects at hBN/SiO heterojunctions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
Modern electronic systems are evolving toward miniaturized designs, flexible architectures, and high-power-density requirements. However, progress in developing electrical insulation materials that integrate mechanical robustness, flexibility, and thermal stability remains a critical challenge. This study introduces a novel nacre-inspired aramid-vermiculite nanopaper featuring a 3D interconnected layered network, designed for use in flexible electrical insulating applications.
View Article and Find Full Text PDF