The dielectric response of an ionic solution includes ionic diffusion, solvent molecule reorientation, and the intermolecular interactions between solvent, cations, and anions. While ionic diffusion and solvent reorientation produce large responses in the dielectric spectra, the contributions of the ion-ion and ion-water interactions can be difficult to measure and compute. Here, we combine computational and experimental techniques to investigate the impact of ion-ion and ion-water interactions in aqueous sodium fluoride solutions and determine whether an ion pairing peak exists in the dielectric spectra.
View Article and Find Full Text PDFIEEE Trans Microw Theory Tech
January 2025
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 30 GHz with associated uncertainties. Conventional microwave microfluidic devices use polymer-based microfluidic layers for fluid delivery, but these polymers swell in organic solvents and are not suitable for many applications. Our device incorporates glass microfluidic channels with platinum coplanar waveguides (CPWs) to provide a solvent-resistant architecture for broadband dielectric spectroscopy.
View Article and Find Full Text PDFFused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are a few reports on the measurement of fused silica's permittivity above 110 GHz that use electrical rather than optical methods. Given that mmWave applications use electrical circuits, additional electrical data would be useful to industry.
View Article and Find Full Text PDFJ Am Chem Soc
September 2023
The environment around a host-guest complex is defined by intermolecular interactions between the complex, solvent molecules, and counterions. These interactions govern both the solubility of these complexes and the rates of reactions occurring within the host molecules and can be critical to catalytic and separation applications of host-guest systems. However, these interactions are challenging to detect using standard analytical chemistry techniques.
View Article and Find Full Text PDFPhys Rev Appl
January 2020
Frequency-dependent linear-permittivity measurements are commonplace in the literature, providing key insights into the structure of dielectric materials. These measurements describe a material's dynamic response to a small applied electric field. However, nonlinear dielectric materials are widely used for their responses to large applied fields, including switching in ferroelectric materials, and field tuning of the permittivity in paraelectric materials.
View Article and Find Full Text PDFNat Mater
February 2020
Epitaxial strain can unlock enhanced properties in oxide materials, but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n = 6 (SrTiO)SrO Ruddlesden-Popper dielectric grown on (110) DyScO. The defect mitigating nature of (SrTiO)SrO results in unprecedented low loss at frequencies up to 125 GHz.
View Article and Find Full Text PDFDetection of conformational changes in biomolecular assemblies provides critical information into biological and self-assembly processes. State-of-the-art in situ biomolecular conformation detection techniques rely on fluorescent labels or protein-specific binding agents to signal conformational changes. Here, we present an on-chip, label-free technique to detect conformational changes in a DNA nanomechanical tweezer structure with microwave microfluidics.
View Article and Find Full Text PDFBroadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface.
View Article and Find Full Text PDFCarbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2016
Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft.
View Article and Find Full Text PDFAdvances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2013
We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description.
View Article and Find Full Text PDFThe miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects.
View Article and Find Full Text PDFBiomicrofluidics
December 2011
We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution.
View Article and Find Full Text PDF