Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The miniaturization and integration of frequency-agile microwave circuits--relevant to electronically tunable filters, antennas, resonators and phase shifters--with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field. Appropriate systems such as BaxSr1-xTiO3 have a paraelectric-ferroelectric transition just below ambient temperature, providing high tunability. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss--Srn+1TinO3n+1 phases--in which (SrO)2 crystallographic shear planes provide an alternative to the formation of point defects for accommodating non-stoichiometry. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability in biaxially strained Srn+1TinO3n+1 phases with n ≥ 3 at frequencies up to 125 GHz. In contrast to traditional methods of modifying ferroelectrics-doping or strain-in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature12582DOI Listing

Publication Analysis

Top Keywords

tunable microwave
8
microwave dielectrics
8
local ferroelectric
8
ferroelectric instability
8
exploiting dimensionality
4
dimensionality defect
4
defect mitigation
4
mitigation create
4
tunable
4
create tunable
4

Similar Publications

To address the growing demand for compact and high-performance microwave filters in modern communication systems, a mixed-mode bandpass filter is proposed in the article. A dual-layer substrate integrated waveguide resonator loaded with a capacitive patch (CP-DSIWR) is proposed and theoretically analyzed, with both patch modes and cavity modes existing. To construct the bandpass filter, two rows of metallic vias are designed in the CP-SIWR to enable coupling between the two types of the modes, with the structure being fed by microstrip line.

View Article and Find Full Text PDF

Quantum dots (QDs) have diverse applications, ranging from optics and energy to biomedical. In this study, carbon quantum dots (CQDs) were synthesized using glucose and tryptophan as precursors using one-step microwave (MW) and sand bath (SB) thermal methods, and the CQDs exhibit distinct photoluminescence behaviors. CQD-SB shows enhanced and stable fluorescence despite its amorphous structure, likely due to prolonged thermal treatment, facilitating the formation of robust surface states and stable reaction products.

View Article and Find Full Text PDF

A review on controllable preparation and applications of biomass-based carbon aerogels.

Bioresour Technol

August 2025

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biomass-based carbon aerogels have emerged as sustainable porous carbon materials with ultralow density, high surface area, and tunable surface function groups. However, precise regulation toward different applications remains a significant challenge for maximum optimizing their performance. In this review, a comprehensive overview of the diverse methods for the controlled synthesis of biomass-based carbon aerogels from renewable feedstocks was provided, with emphasis on precursor selection, gelation chemistry, drying strategies, carbonization, and activation processes.

View Article and Find Full Text PDF

Ultrabroadband on-chip photonics for full-spectrum wireless communications.

Nature

September 2025

State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.

The forthcoming sixth-generation and beyond wireless networks are poised to operate across an expansive frequency range-from microwave, millimetre wave to terahertz bands-to support ubiquitous connectivity in diverse application scenarios. This necessitates a one-size-fits-all hardware solution that can be adaptively reconfigured within this wide spectrum to support full-band coverage and dynamic spectrum management. However, existing electrical or photonic-assisted solutions face a lot of challenges in meeting this demand because of the limited bandwidths of the devices and the intrinsically rigid nature of system architectures.

View Article and Find Full Text PDF

Observation of nonlinear edge states in an interacting atomic trimer array.

Light Sci Appl

August 2025

State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.

Exploring the interplay between topology and nonlinearity leads to an emerging field of nonlinear topological physics, which extends the study of fascinating properties of topological states to a regime where interactions between the particles cannot be neglected. For ultracold atomic systems, although many exotic topological states have been recently observed, the nonlinear effect remains elusive. Here, based on the laser-driven couplings of discrete atomic momentum states, we synthesize a topological trimer array, where the atomic interactions give rise to tunable nonlinearities.

View Article and Find Full Text PDF