Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M β-lactamase as a model system. CTX-M hydrolyzes β-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the β-lactamase enzyme and quantitated the function of variants against two β-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962969PMC
http://dx.doi.org/10.1073/pnas.2313513121DOI Listing

Publication Analysis

Top Keywords

active site
24
enzyme active
12
amino acid
12
positive epistasis
12
interactions amino
8
epistasis
8
sequence requirements
8
epistasis enzyme
8
β-lactam antibiotics
8
antibiotic resistance
8

Similar Publications

The estrogen receptor (ER or ERα) remains the primary therapeutic target for luminal breast cancer, with current treatments centered on competitive antagonists, receptor down-regulators, and aromatase inhibitors. Despite these options, resistance frequently emerges, highlighting the need for alternative targeting strategies. We discovered a novel mechanism of ER inhibition that targets the previously unexplored interface between the DNA-binding domain (DBD) and ligand-binding domain (LBD) of the receptor.

View Article and Find Full Text PDF

Structure-Guided Engineering of a Bacterial Sesterterpene Synthase for Sesterviridene Diversification.

J Am Chem Soc

September 2025

Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn,Gerhard-Domagk-Straße 1,Bonn 53121,Germany.

Terpene synthases produce a remarkable structural diversity from acyclic precursors through complex carbocation cascades. Here, we report the crystal structure of the bacterial sesterterpene synthase StvirS bound to geranylfarnesyl thiopyrophosphate (GFSPP), revealing a preorganized active site that enforces a defined folding of the C25 backbone. Guided by this structure, active-site engineering at 11 positions yielded 23 enzyme variants and 13 new sesterterpenes.

View Article and Find Full Text PDF

Jasmonates are plant hormones that regulate plant defense and development. 7-iso-Jasmonoyl-l-isoleucine (JA-Ile) is a representative active jasmonate which is biosynthesized from 7-iso-jasmonic acid (JA) by the jasmonoyl-amido synthases JASMONATE RESISTANT 1 (JAR1) and AtGH3.10 in Arabidopsis thaliana.

View Article and Find Full Text PDF

Docking is a structure-based cheminformatics tool broadly employed in early drug discovery. Based on the tridimensional structure of the protein target, docking is used to predict the binding interactions between the protein and a ligand, estimate the corresponding binding affinity, or perform virtual screenings (VSs) to identify new active compounds. This study introduces the ligand B-factor index (LBI), a novel computational metric for prioritizing protein-ligand complexes for docking.

View Article and Find Full Text PDF

Background: Emotion dysregulation is a central feature in trauma-associated disorders such as posttraumatic stress disorder (PTSD) and borderline personality disorder (BPD). However, it remains unclear whether emotion dysregulation is a transdiagnostic phenomenon closely linked to childhood trauma, or if disorder-specific alterations in emotion processing exist. Following a multimethodological approach, we aimed to assess and compare the reactivity to and regulation of emotions between patients with BPD and PTSD, as well as healthy controls, and identify associations with childhood trauma.

View Article and Find Full Text PDF