98%
921
2 minutes
20
In this work, Eu-doped twin copper oxide (twin CuEuO) was synthesized using the gas-liquid phase chemical deposition method in combination with high-temperature oxidation. The incorporation of Eu ions was affected by their diffusivity and the related charge trapping mechanisms. The twin CuEuO configuration exhibited significant room-temperature ferromagnetism. From our analysis, it was demonstrated that as the Eu doping concentration increased, the saturation magnetization first increased and then gradually decreased, reaching a peak at 0.82 at%. A p-type to an n-type semiconducting transition was also recorded as the doping concentration increased. A significant anomalous Hall effect characterized by a maximum anomalous Hall coefficient of 1.65, and a maximum Hall conductivity mobility of 16.50 Ohm cm and 250.59 cm v s, respectively, were derived for the twin CuEuO, doped with 0.82 at% at room temperature. First-principles computational simulations were also conducted to elucidate the underlying mechanisms of the magnetic properties, the p-type to n-type transition, and the interplay between the spin-polarized states associated with 4f and carriers. In twin CuEuO, the anomalous Hall effect originated from the contribution of the edge-to-jump scattering mechanism. The latter can be significantly enhanced by doping with Eu atoms, which yields the manifestation of the oblique scattering mechanism. Our work paves the way for the development of twin CuEuO material structures, which emerge as an ideal candidate for future spintronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp05466g | DOI Listing |
Immun Ageing
September 2025
Department of Biomedical Data Sciences, Molecular Epidemiology, LUMC, Leiden, The Netherlands.
The MetaboHealth score is an indicator of physiological frailty in middle aged and older individuals. The aim of the current study was to explore which molecular pathways co-vary with the MetaboHealth score. Using a Luminex cytokine assay and liquid chromatography-mass spectrometry-based proteomics we explored the plasma proteins associating with the difference in 100 extreme scoring individuals selected from two large population cohorts, the Leiden Longevity Study (LLS) and the Rotterdam Study (RS), and discordant monozygotic twin pairs from the Netherlands Twin Register (NTR).
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.
View Article and Find Full Text PDFBMJ Open
September 2025
Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
Objectives: To estimate the association between socioeconomic background (derived from household main earner occupation when the survey respondent was aged 14 years old) and likelihood of working as a doctor in adulthood in the UK, and estimate how associations varied over time for respondents who turned 18 years old in different decades.
Design: Observational study of 10 years of pooled data from a nationally representative government survey.
Setting: The United Kingdom (UK).
BMJ
September 2025
Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
Objective: To determine the effect of a prepregnancy lifestyle intervention on glucose tolerance in people at higher risk of gestational diabetes mellitus.
Design: Single centre randomised controlled trial (BEFORE THE BEGINNING).
Setting: University hospital in Trondheim, Norway.
Cell Syst
September 2025
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:
Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets.
View Article and Find Full Text PDF