Microstructure and Property Evolution of Diamond/GaInSn Composites under Thermal Load and High Humidity.

Materials (Basel)

State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., Beijing 100088, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a thermal interface material, diamond/GaInSn composites have wide-ranging application prospects in the thermal management of chips. However, studies on systematic reliability that can guide the practical application of diamond/GaInSn in the high-temperature, high-temperature impact, or high-humidity service environments that are faced by chips remain lacking. In this study, the performance evolution of diamond/GaInSn was studied under high-temperature storage (150 °C), high- and low-temperature cycling (-50 °C to 125 °C), and high temperature and high humidity (85 °C and 85% humidity). The experimental results reveal the failure mechanism of semi-solid composites during high temperature oxidation. It is revealed that core oxidation is the key to the degradation of liquid metal composites' properties under high-temperature storage and high- and low-temperature cycling conditions. Under the conditions of high temperature and high humidity, the failure of Ga-based liquid metal and its composite materials is significant. Therefore, the material should avoid high-temperature and high-humidity environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934926PMC
http://dx.doi.org/10.3390/ma17051152DOI Listing

Publication Analysis

Top Keywords

high humidity
12
high temperature
12
evolution diamond/gainsn
8
diamond/gainsn composites
8
high-temperature storage
8
high- low-temperature
8
low-temperature cycling
8
temperature high
8
liquid metal
8
high
6

Similar Publications

Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.

View Article and Find Full Text PDF

Flexible photonic contactless human-machine interface based on visible-blind near-infrared organic photodetectors.

Natl Sci Rev

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.

View Article and Find Full Text PDF

Thermal microclimate assessment in dairy cow milking parlors: Seasonal variations in temperature-humidity index and implications for heat stress.

Vet World

July 2025

Department of Animal Husbandry, Ruminant Animals and Animal Products Technologies, Faculty of Agriculture, Trakia University, 6000, Bulgaria.

Background And Aim: Rising global temperatures and increasing humidity levels are intensifying the risk of heat stress (HS) in high-yielding dairy cattle. The temperature-humidity index (THI) is a standard metric for evaluating thermal stress in livestock. This study aimed to assess seasonal and diurnal variations in temperature, relative humidity, and THI within a milking parlor and determine their compliance with established thermal comfort thresholds for dairy cows.

View Article and Find Full Text PDF

A single-component white-light-emitting hybrid copper(I) halide constructed using a supramolecular cation for WLEDs.

Dalton Trans

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

Single-component white-light-emitters ensure color stability while reducing device complexity, and are ideal candidates for white light-emitting diodes (WLEDs). However, the realization of single-component white-light emission with high efficiency and stability is still a challenge. Herein, a supramolecular cation strategy was used to synthesize the organic-inorganic hybrid copper(I) halide [(AMTA)(18C6)]CuI (1), with AMTA = 1-adamantanamine and 18C6 = 18-crown-6.

View Article and Find Full Text PDF

Assessment of particle-bound PFAS in ambient air from a coastal urban environment in South Florida.

J Hazard Mater

September 2025

Institute of Environment, Florida International University, 3000 NE 151st St., Biscayne Bay Campus, North Miami, FL 33181, USA; Department of Chemistry and Biochemistry. Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA. Electronic address: nsoar

Per- and polyfluoroalkyl substances (PFAS) are man-made pollutants widely used in industrial and consumer products, known to pose significant health risks. While their occurrence in water, soil, and food has been extensively studied, limited research has focused on ambient air, particularly in the U.S.

View Article and Find Full Text PDF