98%
921
2 minutes
20
Viruses are an abundant and crucial component of the human microbiome, but accurately discovering them via metagenomics is still challenging. Currently, the available viral reference genomes poorly represent the diversity in microbiome samples, and expanding such a set of viral references is difficult. As a result, many viruses are still undetectable through metagenomics even when considering the power of metagenomic assembly and binning, as viruses lack universal markers. Here, we describe a novel approach to catalog new viral members of the human gut microbiome and show how the resulting resource improves metagenomic analyses. We retrieved >3,000 viral-like particles (VLP) enriched metagenomic samples (viromes), evaluated the efficiency of the enrichment in each sample to leverage the viromes of highest purity, and applied multiple analysis steps involving assembly and comparison with hundreds of thousands of metagenome-assembled genomes to discover new viral genomes. We reported over 162,000 viral sequences passing quality control from thousands of gut metagenomes and viromes. The great majority of the retrieved viral sequences (~94.4%) were of unknown origin, most had a CRISPR spacer matching host bacteria, and four of them could be detected in >50% of a set of 18,756 gut metagenomes we surveyed. We included the obtained collection of sequences in a new MetaPhlAn 4.1 release, which can quantify reads within a metagenome matching the known and newly uncovered viral diversity. Additionally, we released the viral database for further virome and metagenomic studies of the human microbiome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925137 | PMC |
http://dx.doi.org/10.1101/2024.02.19.580813 | DOI Listing |
Curr Microbiol
September 2025
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
This review article describes recent research advances in the relationship between spinal cord injury (SCI) and the gut microbiota and each other's inflammatory response. SCI is a serious neurological disease that directly damages physiological function. Recent studies have shown that SCI significantly affected the composition and function of the gut microbiota, and even caused intestinal inflammation.
View Article and Find Full Text PDFBMC Microbiol
September 2025
Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.
View Article and Find Full Text PDFJ Nutr
September 2025
University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France; University Paris-Saclay, INRAE, MICALIS, 78350 Jouy-en-Josas, France. Electronic address:
This review explores the century-long trajectory of gut microbiome research and its contribution to shaping our modern diet. It further highlights the transformative potential of current discoveries to revolutionize future dietary habits and nutritional practices. From the pioneering work of E.
View Article and Find Full Text PDFJ Nutr
September 2025
Institute of Food and One Health, Leibniz University Hannover, 30167 Hannover, Germany.
Background: Dietary fiber supports metabolic health via microbial fermentation, producing short-chain fatty acids (SCFAs). However, metabolic responses to fiber vary between individuals, potentially due to differences in gut microbiota composition. The Prevotella-to-Bacteroides (P/B) ratio has emerged as a potential biomarker for fiber responsiveness.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi
Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.
View Article and Find Full Text PDF